Deep Learning-Based Instance Segmentation of Neural Progenitor Cell Nuclei in Fluorescence Microscopy Images

Mostrar el registro sencillo del ítem

dc.rights.license https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ es_ES
dc.creator Pérez, Gabriel es_ES
dc.creator Russo, Claudia es_ES
dc.creator Palumbo, María Laura es_ES
dc.creator Moroni, Alejandro David es_ES
dc.date.accessioned 2025-02-05T12:05:10Z
dc.date.available 2025-02-05T12:05:10Z
dc.date.issued 2024-10-15
dc.identifier.citation Pérez, G., Russo, C., Palumbo, M. L., y Moroni, A. D. (2024). Deep Learning-Based Instance Segmentation of Neural Progenitor Cell Nuclei in Fluorescence Microscopy Images. Cloud Computing, Big Data and Emerging Topics (JCC-BD&ET 2024) es_ES
dc.identifier.isbn 978-3-031-70806-0 es_ES
dc.identifier.issn 1865-0929 es_ES
dc.identifier.uri http://repositorio.unnoba.edu.ar/xmlui/handle/23601/905
dc.description.abstract In this work, a Deep Learning-based machine vision model was devel- oped for the detection, segmentation and counting of Neural Progenitor Cell nuclei from fluorescence microscopy images. The cells were obtained from adult mice and cultivated in vitro, with cellular nuclei labeled using DAPI dye. Convolu- tional neural networks for instance segmentation, specifically the Mask R-CNN model with ResNet-50 and ResNet-101 backbones, were trained to recognize the nuclei, and their results were evaluated. Nuclei labeling was implemented semi- automatically, applying a Superpixel technique and then refining the segmentations from a manual process, also using a pre-trained model, which allowed to assem- ble a dataset of 66 images with 6392 labels in total. The results obtained with the Resnet-50 backbone show that there is an effectiveness of 98.6% for between the specialist count and model-predicted count, in addition to having an mAP50 of 98.0%. This approach has the potential to significantly reduce the time and effort required to analyze large image sets, which is especially useful in studies that require repetitive and detailed cellular analysis. es_ES
dc.description.sponsorship Fil: Pérez, Gabriel. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Instituto de Investigación y Transferencia en Tecnología; Argentina. es_ES
dc.description.sponsorship Fil: Russo, Claudia. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Instituto de Investigación y Transferencia en Tecnología; Argentina. es_ES
dc.description.sponsorship Fil: Palumbo, María Laura. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones Básicas y Aplicadas; Argentina. es_ES
dc.description.sponsorship Fil: Moroni, Alejandro David. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones Básicas y Aplicadas; Argentina. es_ES
dc.format application/pdf es_ES
dc.language.iso eng es_ES
dc.publisher Springer Nature Switzerland AG es_ES
dc.rights info:eu-repo/semantics/openAccess es_ES
dc.source Cloud Computing, Big Data and Emerging Topics (JCC-BD&ET 2024) es_ES
dc.subject Instance segmentation es_ES
dc.subject Deep Learning es_ES
dc.subject Fluorescence Microscopy es_ES
dc.subject Cell Nuclei es_ES
dc.title Deep Learning-Based Instance Segmentation of Neural Progenitor Cell Nuclei in Fluorescence Microscopy Images es_ES
dc.type info:eu-repo/semantics/conferenceObject es_ES
dc.type info:ar-repo/semantics/documento de conferencia es_ES
dc.type info:eu-repo/semantics/publishedVersion es_ES
dc.type info:eu-repo/semantics/conferenceObject es_ES
dc.type info:ar-repo/semantics/documento de conferencia es_ES
dc.type info:eu-repo/semantics/publishedVersion es_ES
dc.type info:eu-repo/semantics/conferenceObject es_ES
dc.type info:ar-repo/semantics/documento de conferencia es_ES
dc.type info:eu-repo/semantics/publishedVersion es_ES
dc.description.version Con referato es_ES
dc.relation.publisherversion https://doi.org/10.1007/978-3-031-70807-7 es_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • ITT - Artículos [72]
    Instituto de Investigación y Transferencia en Tecnología

Mostrar el registro sencillo del ítem

Buscar en el Repositorio


Búsqueda avanzada

Listar

Mi cuenta