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In antineoplastic therapy, one of the challenges is to adjust the treatment to the needs of
each patient and reduce the toxicity caused by conventional antitumor strategies. It has
been demonstrated that natural products with antitumoral properties are less toxic than
chemotherapy and radiotherapy. Also, using already developed drugs allows developing
substantially less costly methods for the discovery of new treatments than traditional drug
development. Candidate molecules proposed for drug repositioning include 4-
methylumbelliferone (4-MU), an orally available dietetic product, derivative of coumarin
and mainly found in the plant family Umbelliferae or Apiaceae. 4-MU specifically inhibits the
synthesis of glycosaminoglycan hyaluronan (HA), which is its main mechanism of action.
This agent reduces the availability of HA substrates and inhibits the activity of different HA
synthases. However, an effect independent of HA synthesis has also been observed. 4-
MU acts as an inhibitor of tumor growth in different types of cancer. Particularly, 4-MU acts
on the proliferation, migration and invasion abilities of tumor cells and inhibits the
progression of cancer stem cells and the development of drug resistance. In addition,
the effect of 4-MU impacts not only on tumor cells, but also on other components of the
tumor microenvironment. Specifically, 4-MU can potentially act on immune, fibroblast and
endothelial cells, and pro-tumor processes such as angiogenesis. Most of these effects
are consistent with the altered functions of HA during tumor progression and can be
interrupted by the action of 4-MU. While the potential advantage of 4-MU as an adjunct in
cancer therapy could improve therapeutic efficacy and reduce toxicities of other
antitumoral agents, the greatest challenge is the lack of scientific evidence to support
its approval. Therefore, crucial human clinical studies have yet to be done to respond to
this need. Here, we discuss and review the possible applications of 4-MU as an adjunct in
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conventional antineoplastic therapies, to achieve greater therapeutic success. We also
describe the main proposed mechanisms of action that promote an increase in the
efficacy of conventional antineoplastic strategies in different types of cancer and prospects
that promote 4-MU repositioning and application in cancer therapy.
Keywords: 4-methylumbelliferone, hyaluronan, extracellular matrix, cancer, antitumoral action
1 INTRODUCTION

Natural products derived from plants have been extensively used
for thousands of years. However, to guarantee their correct
application and safety, their benefits should be thoroughly
investigated through both basic and clinical studies. Although
the World Health Organization (WHO) has established the
operational guide to use and conduct clinical studies of these
products, rules and regulations depend on the region or country.
Several products that contain active principles from plant extracts
are already included in the health system, but their percentages in
the prescription depend on the authorization by entities such as
the European Medicines Agency (EMA) or the Food and Drug
Administration (FDA). For example, in an analysis made of
prescriptions dispensed from community pharmacies in the
USA between 1959 and 1980, 25% were products derived from
plants (1). Among these herbal-derived products are coumarins,
whose name originated from the fact that they were first found in
the seed of the tree Dipteryx odorata of the family Fabaceae,
commonly known as “cumaru” or “kumaru” in Central and South
America (2). Coumarin derivatives are currently extracted from
many plants across continents and are found in high levels in
fruits, roots, stems and leaves (3). It has been described that
coumarin and its derivatives have diverse biological effects, acting
as anti-inflammatory (4), anticoagulant (5), antiviral (6),
fungicidal (7) and antitumor agents (8). Chemically, they are
benzo-a-pyrones (IUPAC nomenclature: 2H-chromen-2-one),
which consist of a benzene ring joined to a pyrone ring. Among
coumarin derivatives is 4-methylumbelliferone (4-MU),
considered to belong to the group of simple coumarins (9). 4-
MU is hydroxylated in position seven, known as umbelliferone,
and methylated in position four (IUPAC nomenclature: 7-
hydroxy-4-methylcoumarin), and also known by the
international nonproprietary or generic name: hymecromone.
The information provided in the National Center for
Advancing Translational Sciences (NCATS) Inxight portal
Drugs indicates that this substance is approved in Europe and
Asia to treat biliary spasm and is used orally as a choleretic and
antispasmodic drug and as a standard for the fluorometric
determination of enzyme activity (https://drugs.ncats.io/).

Umbelliferones are widely distributed among the plant
families Rutaceae, Umbelliferae (celery, anise) and Asteraceae
(chamomile) (1). However, since these compounds are not easily
extracted from plants, they are synthesized using the
“Pechmann” condensation reaction of resorcinol and formyl
acetic acid (10). Our interest in these molecules lies on their
mechanism of action. In particular, 4-MU is able to inhibit
hyaluronan (HA) synthesis since the active glucuronidation of 4-
2

MU depletes the cellular UDP-glucuronic acid (UDP-GlcUA)
pool necessary for HA synthesis. It has also been determined that
4-MU downregulates the mRNA levels of HA synthases (HAS)
(11). Since HA is an important extracellular glycosaminoglycan,
able to modulate tumor behavior (12), 4-MU can be considered
as a drug with antitumor action. In addition, some reports have
demonstrated that its therapeutic action in pathological
conditions relies on more than just its effects on HA synthesis
(13, 14). However, it is still necessary to deepen the knowledge on
this mechanism of action. As mentioned, 4-MU depletes the
UDP-GlcUA pool, whose synthesis is dependent on glucose
metabolism, thus affecting the cellular energetic state (15).
Besides, several metabolic routes that use UDP-GlcUA, such as
conjugation reaction, which allows inactivation of other
metabolites, could be affected.

Thus, in this review, we discuss the tumor process that might
be modulated by 4-MU, focusing on the type of tumor as well as
on its action on different tumor-associated cells besides the
tumor cell itself.
2 PHARMACOLOGICAL ASPECTS

2.1 4-MU Metabolism
4-MU metabolism gives rise to a limited number of metabolites
however the metabolites that are produced depend on the
species (3). Specifically, 4-MU is metabolized mainly by
glucuronyltransferases to a glucuronide conjugate in phase II
reactions, transforming it into 4-methylumbelliferone-beta-D-
glucuronide (4-MUG) (16). 4-MU, like other coumarins, is
insoluble in water, and since it is not a polar molecule, it can
cross the lipidic intestinal barrier easily, allowing its complete
absorption when orally administered, finally binding to plasma
protein, which allows it to adequately reach the tissues (3). It has a
short half-life and low bioavailability and is excreted primarily in
urine (17). Besides, the methyl group in position four offers 4-MU
several advantages over the other derived molecules, such as lower
toxicity, since it prevents its metabolism to the mutagenic 3,4-
coumarin epoxide by the action of liver cytochrome P450 enzymes
(18), and lower anticoagulant effect compared to dicoumarol or
warfarin. Thus, products containing 4-MU are available in the USA
and Europe as dietary supplements (Heparvit®, Heparmed®,
DetoxPro®). Besides, a clinical trial in the USA in patients with
chronic hepatitis B and C (ClinicalTrials.gov identifier
NCT00225537) has also demonstrated that 4-MU is safe,
reaching phase II of the study in 2007, although complete results
are not published yet. The dose ranges used in humans are between
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8 and 7000 mg/day (19), being several times higher than the
acceptable daily intake in food and cosmetic products, which is
0.06 mg/kg/day (20). However, no mutagenic or genotoxic effects
have been observed (21). This makes it an interesting compound to
consider for use in several diseases and propose its repositioning in
cancer, since positive responses have been observed even in
advanced stages of this disease (22).

Based on studies in rats, which are poor models to compare
with humans for this particular type of metabolism, the FDA
classified coumarins as toxic compounds (9). However, as
compared with their hepatotoxicity in rats and mice (23),
studies carried out in humans have shown little evidence of
liver dysfunction (3). Moreover, as compared with other
coumarin derivatives, 4-MU has been safely used in liver
therapy as a choleretic and spasmolytic, improving liver
detoxification systems through increased bile production (24).
In humans, 4-MU is consumed at a dose of 1500 to 2200 mg/day
as a choleretic, and, in several cancer models in mice, it has
shown antitumor activity in doses of 1000 to 3000 mg/kg, being
the maximal tolerated dose 2300 to 7200 mg/kg (3). Thus, taking
into account this pharmacological aspect of 4-MU, it is possible
to suggest that , in combination with other cancer
chemotherapeutic drugs, these doses could be lower without
loss of their effectiveness, providing additive or synergistic effects,
as will be discussed below.

2.2 Differential Pharmacological Effects
of 4-MU
Regarding the undesirable pharmacological effects of 4-MU,
Garcıá-Vilas et al. observed that it could show a potent
antiangiogenic effect by inducing the inhibition of HA
synthesis and that since HA is a normal constituent of the
extracellular matrix (ECM) in several tissues in humans, its
longtime use might cause systemic damage (25). In the context
of cancer, it would be considered that 4-MU should be used at
similar time and in combination with a chemotherapy protocol.
Therefore, tissues that have active HA synthesis could be affected
during chemotherapy treatment. Besides, due to the current
difficulty of deliver the drug in a tumor-specific manner, the
time schedule during cancer treatment must be carefully studied
in human patients. In an atherosclerosis mouse model, Nagy
et al. found that 4-MU alters the normal vascular endothelial
glycocalyx, favoring its progression (26). This also suggests that
this compound could induce side-effects like cardiovascular
alterations, and therefore the correct dose and treatment time
should be analyzed in different contexts to reduce potential
adverse effects. However, experiments at our lab support the
hypothesis that, in a context where HA is overproduced, 4-MU
could have therapeutic effect. In hepatocellular cell lines with
different levels of HA production, we observed that significant
antiproliferative or apoptotic effects were detected only in cells
with high HA levels (27). In fact, 4-MU treatment has been
found to be beneficial for pathologies with high level or
dysregulated synthesis of HA like endometriosis (28), where
the adherence of menstrual CD44-expressing endometrial cells
to mesothelial cells via binding to HA is involved in
Frontiers in Oncology | www.frontiersin.org 3
endometriotic lesions, or autoimmune diseases, such as
rheumatoid arthritis, type 1 Diabetes or multiple sclerosis,
where the chronic inflammation state is associated with
abnormal deposition of HA in the synovial compartment,
pancreatic islets and spaces between myelinated axons,
respectively (29).

In the next section, we will discuss the antitumor effects of 4-
MU in different types of cancers, which is the focus of this review.
3 ANTITUMORAL EFFECTS OF 4-MU
TREATMENT IN DIFFERENT TYPES
OF CANCER

In several human cancers, HA concentration is increased (30, 31)
and it is well known that a HA-rich stroma has an active role in
the tumor microenvironment, promoting tumor development,
angiogenesis, metastasis (32, 33), and drug resistance (34), and
even acting as an immune-regulatory factor (35). Therefore,
targeting HA synthesis by 4-MU represents a specific
therapeutic approach to control HA levels in the cancer cell
stroma. Several reports have shown that 4-MU inhibits the
proliferation, migration, and invasion of multiple cancer types,
both in vitro and in vivo, by a mechanism dependent on the
inhibition of HA synthesis (Table 1), which will be the
mechanism mainly discussed, although independent
mechanisms will also be reviewed.

3.1 Colorectal Carcinoma
Colorectal cancer (CRC), one of the most observed types of
tumor worldwide, presents treatment limitations due to the
necessity of surgical treatment and the high rates of metastasis
and mortality (68). For this reason, it is one of the main targets of
the investigation about alternative therapies that seek to control
tumor spread and reduce mortality. In this sense, several
scientific reports have demonstrated the specific role of 4-MU
in CRC. In colon cancer cells, Heffler et al. showed that the
inhibition of the inhibition of HAS and HA decreases tumor
growth and increase apoptosis in a dose-dependent manner (69).
Similarly, in the HCT-8 cell line, Wang et al. showed that 4-MU
can effectively reduce 2D and 3D proliferation as well as cell
motility and that this effect could be reversed by addition of
exogenous HA, indicating that the reduction of HA production
in cancer cells could inhibit tumor growth and metastasis (70). In
another metastatic CRC cell line, SW620, Heffler et al. also found
that in vitro treatment with 4-MU significantly reduced cell
viability (69). Besides, based on the fact that HA and focal
adhesion kinase (FAK) signaling are associated with the
promotion of tumorigenesis, these authors observed that 4-MU
could act synergistically during FAK inhibition (69). Also, in
CT26 CRC cells, Malvicini et al. observed that 4-MU significantly
reduced HA synthesis without affecting their viability and that, in
an in vivomouse model, the reduction of HA by 4-MU treatment
reduced tumor interstitial pressure without affecting tumor
growth (36). However, in this model, the authors also found
that 75% of mice treated with 4-MU in combination with
October 2021 | Volume 11 | Article 710061
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cyclophosphamide and IL-12 showed tumor regression
(36). This triple combination induced the production
of antiangiogenic factors and increased the migration of
cytotoxic T lymphocytes in tumors, showing that tumor
microenvironment remodeling and reduction of HA synthesis
increase the efficacy of anticancer immunotherapies combined
with chemotherapy agents (36).

These reports indicate that, in CRC models, 4-MU exerts its
action by inhibiting HA synthesis, but the impact of this
inhibition could be associated or not with the modulation of
tumor cell survival, suggesting that it affects both tumor cells and
the tumor microenvironment.

3.2 Pancreatic Cancer
Pancreatic ductal adenocarcinoma (PDAC) is the most
malignant of all solid cancers because of the difficulties in early
diagnosis and the poor response to chemotherapy (37). PDAC
has an abundant volume of stroma composed of large amounts
of HA (30, 71). It has been demonstrated that, in this type of
cancer, 4-MU inhibits HA synthesis, thus affecting tumor cell
behavior (38). In pancreatic cancer cells, Nagase et al. first
determined that 4-MU suppressed cell proliferation and
Frontiers in Oncology | www.frontiersin.org 4
invasion and increased apoptosis by inhibiting HA production
(37). Then, in an in vivo mouse model of PDAC, these authors
found that 4-MU treatment suppressed HA accumulation in
pancreatic tumor tissue and improved survival rate (37). To
better understand tumor microenvironment interactions, Cheng
et al. studied this inhibition in PDAC Panc-1 cells co-cultured
with stromal fibroblasts (39). Specifically, they. found that 4-MU
inhibited the enhanced migration of PDAC cells in response to
tumor-stromal interactions with fibroblasts (39). In addition,
Nakazawa et al. showed that 4-MU inhibited HA synthesis and
the formation of the pericellular HA coat in KP1-NL pancreatic
cells and decreased liver metastases in vivo (40). In another
human pancreatic cancer cell-bearing mouse model, Yoshida et
al. observed a decrease in tumor volume and a significant
reduction of the intratumoral HA amount (41). Besides,
histological analysis by electron microscopy revealed that 4-
MU altered the intercellular space, causing it to become less
cohesive and more permissive to drug delivery, indicating that
this could be a promising combination with chemotherapy
agents, improving their effects (41). In fact, several reports
have indicated the potential role of 4-MU as a co-adjuvant
during the chemotherapeutic treatment of this cancer. In this
TABLE 1 | Effect of 4-MU treatment in different types of tumors.

Tumor Effect of 4-MU treatment (in vitro and/or in vivo) References

Colon carcinoma Higher expression of antiangiogenic factors (36)
Higher migration rates of cytotoxic T lymphocytes
Reduction of tumor interstitial pressure

Pancreatic cancer Suppressed cell proliferation, migration and invasion (37–42)
Increased apoptosis
Alterations in intercellular spaces
Decreased liver metastasis
Potentiated effect of gemcitabine and 5-fluoruracil
Enhanced cytotoxic effect of T lymphocytes

Prostate cancer Inhibited proliferation, motility and invasion (43, 44)
Higher apoptosis
Decreased tumor growth and microvessel formation

Ovarian cancer Inhibition of cell migration, proliferation and invasion (45–47)
Decreased tumor growth

Breast cancer Inhibition of the proliferation of human breast carcinoma cells (48–51)
Decreased cell motility, invasion and proliferation
Decreased incidence of metastasis and growth of CSC in the bone

Hepatocellular carcinoma Inhibition of cancer stem cell properties (27, 52, 53)
Reduction of liver fibrosis and impairment of tumor growth by reduction of proangiogenic factors

Bone-derived cancer Osteosarcoma: (54–57)
Inhibition of cell proliferation, migration and invasion.
Reduced lung metastasis
Chondrosarcoma:
Suppression of cell proliferation, migration and invasion
Inhibition of local tumor growth
Fibrosarcoma:
Positive effect on the sensitivity of cells to radiotherapy

Melanoma Inhibition of cell adhesion and locomotion (58–60)
Suppression of liver metastasis
Positive effect on the sensitivity of cells to vemurafenib

Chronic myeloid leukemia Induction of apoptosis in vitro and in vivo (61–64)
Reduced tumor growth
Sensitization of CML cells to doxorubicin and vincristine

Glioblastoma Decreased cell migration and proliferation (65–67)
Induction of apoptosis
Sensitization of glioblastoma cells to temozolomide
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regards, Nagase et al. found that in vivo co-administration of 4-
MU and the chemotherapeutic drug gemcitabine to tumor-
inoculated mice decreased the size of primary and metastatic
tumors more than gemcitabine alone (37). By combining 5-
fluorouracil with 4-MU treatment in an in vivo pancreatic cancer
model, Yoshida et al. found similar results, where 4-MU
potentiated the effects of 5-fluorouracil by sensitizing tumor
cells to its cytotoxic action (42). Also, the role of 4-MU as a
modulator of immunotherapy strategy during PDAC has been
recently determined. Suto et al., for example, have recently
shown that 4-MU inhibited PDAC cell proliferation and HA
synthesis in four different PDAC cell lines, and enhanced gd T-
cell-rich peripheral blood mononuclear cell-mediated
cytotoxicity against pancreatic cells (72). These authors found
the same results in vivo, where 4-MU reduced intratumor HA
deposition and promoted infiltration of transferred gd T-cells
into tumor tissue, and consequently suppressed tumor growth
(72). These data indicate that 4-MU inhibits HA synthesis and
reduces the amount of HA in the ECM of prostate cancer, thus
affecting tumor cell behavior and its response to chemo-
or immunotherapy.

3.3 Prostate Cancer
Some researchers have proposed that, in prostate cancer, 4-MU
acts as a regulator of HA synthesis and angiogenesis. Lokeshwar
et al., for example, studied the effects of 4-MU on different
prostate cancer cell lines and demonstrated that 4-MU inhibited
proliferation, motility, and invasion and increased apoptosis (43,
44). Besides, in a mouse model of prostate cancer, these authors
observed that oral administration of 4-MU significantly
decreased transgenic adenocarcinoma and PC3-ML tumor
growth without organ toxicity or changes in serum chemistry
or body weight. They also found that tumors from 4-MU–treated
animals showed reduced microvessel density and downregulated
HA receptors, Akt signaling and b-catenin activation (43, 44).
Although not many reports have evaluated 4-MU as a modulator
of prostate cancer behavior, these studies, together with other
studies analyzing the effect of 4-MU in other types of tumors,
reinforce the inhibitory role of 4-MU in prostate cancer growth
with an anti-angiogenic potential. Therefore, these data open up
new avenues of investigation of the effect of this natural molecule
on pancreatic cancer and its possible therapeutic applications.

3.4 Ovarian Cancer
Ovarian cancer is one of the most frequent gynecological
pathologies in adult women. It has a high mortality rate since
it metastasizes early and quickly, presenting high resistance to
chemotherapy (45, 73). Importantly, high levels of HA have been
detected in histological samples from tumor and metastatic
lesions derived from patients with epithelial ovarian cancers
with worse prognostics, suggesting that this molecule could be
considered a therapeutic target (46). Thus, many studies are
currently assessing the ability of natural products as 4-MU to
induce ovarian cancer cell death and complement the antitumor
treatment. One of the first studies performed for Kultti et al.
showed in SKOV-3 ovarian cancer cells determined that 4-MU
inhibits HA synthesis and produces large quantities of 4-MU-
Frontiers in Oncology | www.frontiersin.org 5
glucuronide in vitro, depleting the cellular UDP-GlcUA source
(11). The inhibitory effect of 4-MU has also been observed in the
down-regulation of HAS3 expression (11). In addition, Anttila et
al. found that the reduction of the HA-pericellular coat was
related to the inhibition of cell migration, proliferation and
invasion (46). Extending the studies on ovarian cancer,
Tamura et al. demonstrated the effect of 4-MU on HRA
human ovarian serous adenocarcinoma cells, using in vitro
assays and an in vivo rat peritoneal carcinoma model (47).
These authors found that 4-MU inhibited ovarian cancer cell
proliferation in a dose-dependent manner in vitro, but also found
non-inhibitory effects of 4-MU on cell invasion and migration
(47). In their in vivo experiments they found that 4-MU
administration inhibited the growth of peritoneal tumors and
significantly prolonged rat survival (47). Recently, An et al. have
determined the molecular mechanisms associated with the
inhibitory effect of 4-MU on ES2 and OV90 epithelial ovarian
cancer cells (45). Specifically, they observed a decrease in cell
proliferation and cell arrest in the G2/M phase of the cell cycle,
which defines lower cell division rates. They also found that 4-
MU interfered with calcium homeostasis, induced endoplasmic
reticulum stress, inhibited AKT and S6 phosphorylation, and
increased MAPK phosphorylation (45).

Certain ovarian cell carcinomas show a spherule-like mucoid
stroma with a hollow acellular space. Despite the absence of
stromal cells, both the mucoid stroma and hollow spheroids
contain abundant ECM, mainly composed of HA, which plays a
crucial role in the formation of those structures and in tumor
progression. In this sense, Kato et al. determined that after 4-MU
treatment of HAC-2 ovarian cancer cells, HA synthesis was
inhibited and consequently, the spherule-like accumulation of
HA and hollow spheroids were not observed (74). These authors
determined that the inhibition of HA synthesis was associated
with the reduction of cell growth (74).

All these reports indicate that tumor-derived HA is essential
for the regulation of cell growth, migration and invasion ability
of ovarian clear cell carcinoma. Thus, the inhibition of HA
synthesis could be a potential adjunctive therapy, avoiding the
interaction of this molecule with its receptors, like CD44, and in
turn blocking the signaling that allows tumor dissemination in
this type of cancer. However, it has been observed that 4-MU
effect could also be independent of the modulation of HA
expression, affecting other tumor signals besides HA-CD44, a
fact that also supports its therapeutic use.

3.5 Breast Cancer
Breast cancer is one of the most frequently diagnosed cancers in
women and is considered to have a high phenotypic diversity,
which heavily influences the progression and outcome of the
treatment. In this sense, three receptors are frequently analyzed
for the correct treatment decision: the estrogen receptor (ER), the
progesterone receptor (PR) and the human epidermal growth
factor receptor 2 (HER2) (75). Some reports have shown that 4-
MU treatment leads to changes in the proliferative phenotype of
ER- and ER+ cells (48, 75). Karalis et al., for example, found that
4-MU treatment led to a reduction in cell proliferation in both
cell types, which, in ER+ cells, was more pronounced after 2 days,
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and in ER- cells much faster on the first day of treatment (48).
This quicker reaction of ER- cells to lower concentrations of 4-
MU than ER+ cells could indicate a stronger susceptibility of
these cells to low 4-MU concentrations showed that 4-MU
inhibits proliferation of human breast carcinoma cells in
different cell lines, like T-47D (ER+PR+HER2-) and MDA-MB-
231 (ER-PR-HER2-) cells (48). Additionally, these authors
showed that low levels of HA and glucose in the tumor
microenvironment could increase the sensitivity of breast
cancer cells to 4-MU treatment and thus inhibit cell
proliferation more strongly (48).

In breast cancer cell lines with highly invasive character, such
as MDA-MB-231 cells. Urakawa et al. demonstrated that 4-MU
suppresses HA synthesis and accumulation probably due to the
suppression of HAS2 expression, which could in turn lead to
lower cell motility, invasion and proliferation (49). By using 4-
MU to inhibit HA synthesis in breast cancer cells, Brett et al.
suggested that a decrease in pericellular matrix formation is
correlated with decreased invasiveness, and proposed that a
reduction in HA synthesis could inhibit the formation of the
pericellular matrix and provide a good strategy for inhibition of
metastatic progression (50). Also, Kultti et al. showed that 4-MU
inhibits migration of the non-invasive MCF-7 (ER+PR+HER2-)
breast cancer cells and that the growth of these cells is sensitive to
4-MU, being almost completely blocked by high concentrations
of the drug (11). These authors also showed that 4-MU inhibits
HA by reduction of the cellular HAS substrate UDP-GlcUA and
that in MCF-7 cells this reduction was dose-sensitive, with less
pronounced response at higher doses, while MDA-MB-361
(ER+PR-HER2+) cells lost most of their UDP-GlcUA at higher
doses of 4-MU (11).

To form metastasis, metastatic tumor cells usually move into
a specific organ. In particular, breast cancer preferentially
metastasizes to the bone and lungs. Okuda et al. showed that
cancer stem cells (CSCs) from a metastatic breast tumor show
considerably higher tumorigenic and metastatic capability than
CSCs from a low-metastatic tumor and indicate that HAS2 is
essential to provide CSCs with a metastatic phenotype (51).
These authors proposed that 4-MU, due to the specific inhibition
of HA by affecting HAS2 activity, can considerably suppress the
incidence of metastasis and growth of CSCs in the bone (51).

Thus, the above-mentioned reports indicate that 4-MU could
be beneficial to treat breast cancer, although the sensitivity of
tumor cells and the response to this drug will depend on the
hormonal receptor status. Interestingly, this opens a line of
investigation that could associate ECM remodeling by 4-MU
with the signal mediated by progestogens in breast cancer. On
the other hand, it is important to highlight that, due to its ability
to modulate the phenotype of CSCs, 4-MU has a great
therapeutic potential and could help to control tumor resistance.

3.6 Hepatocellular Carcinoma
Hepatocellular carcinoma (HCC) is a tumor that frequently
occurs in the inflammatory microenvironment, usually as a
reaction process that arises in response to chronic injuries, like
chronic hepatitis C and B virus infection or alcohol abuse (76).
Regardless of the etiology, in chronic liver disease, the ECM
Frontiers in Oncology | www.frontiersin.org 6
components, like HA and collagen, deposit in the liver,
depending on the level of fibrosis progression. For this reason,
the level of HA could be used as a biomarker to assess the stage of
liver fibrosis (77). In high-HA-producing murine Hepa129 cells
and in medium-HA-producing human Hep3B cells, Piccioni et
al. showed that 4-MU inhibited proliferation and induced
apoptosis (78). Contrarily, in human low-HA-producing Huh7
cells, these authors observed partial resistance to 4-MU
treatment (78). These results show that the mechanism of 4-
MU action in HCC is highly dependent on HA levels (78). It has
also been demonstrated that 4-MU, by inhibiting HA, could
reduce liver fibrosis and diminish tumor growth by reduction of
proangiogenic factors, like VEGF and CXCL12, and also by
reduc t ion of IL-6 product ion in the l iver tumor
microenvironment (27). Some reports have shown that 4-MU
inhibits the properties of CSCs by the inhibition of HA,
accompanied by a reduction of CSC markers, l ike
transmembrane glycoproteins CD44 and CD133, as well as
CD90 and EpCAM cells, indicating a possible mechanism
which involves HA in cell-to-cell and cell-to-matrix
interactions (52, 53). In contrast to these reports, Mikami et al.
showed that systemic inhibition of HA synthesis by oral 4-MU
administration promotes the development of tumor in mice with
liver tumors induced by administration of thioacetamide (TAA)
(79). A possible explanation for this opposite result could be
associated with the HCC model used by the authors. The
administration of TAA induces DNA damage by increasing the
levels of reactive oxygen species (ROS) and affecting the
oxidative status of the liver microenvironment. Thus, HA
inhibition at early stages could be affecting the documented
protective action of HA during oxidative damage (80). At this
time, 4-MU administration would be detrimental, perpetuating
the damage of TAA and accelerating its carcinogenic action.

These results suggest that 4-MU administration could have a
positive impact on the treatment of HCC by affecting angiogenic
factors as well as hepatic CSCs. However, as commented in
section 2.2, further preclinical studies will be required to adjust
the moment of its application and the length of its use according
to the tumor stage to avoid systemic alterations. On the other
hand, analysis of the data about the interaction of 4-MU with
other drugs are also necessary to determine whether they could
affect its antitumoral action in HCC.

3.7 Bone-Derived Tumors
Osteosarcoma (OS), the most common primary bone tumor, is
responsible for considerable morbidity and mortality due to its
high rates of pulmonary metastasis. Although the prognosis of
OS patients has improved dramatically with the introduction of
chemotherapy, cases with metastases or an unresectable tumor
still have a poor prognosis (54). Several researchers have
suggested the involvement of a HA‐rich ECM in the
tumorigenicity of OS cells, and proposed that suppression of
this HA‐rich ECM leads to inhibition of malignant cell behavior
(81–83). Arai et al. demonstrated that 4-MU reduces the
formation of functional cell-associated matrices in OS cells and
inhibits cell proliferation, migration, and invasion, resulting in
the reduction of tumorigenicity and lung metastasis (54). These
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authors further studied 4-MU treatment in in vivo models of OS
and found that, although it showed only a mild inhibitory effect
on the growth of the primary tumor, it markedly inhibited the
development of lung metastasis (54).

4-MU treatment has also shown antitumor effects on low‐
grade chondrosarcoma, which is the second most common
primary malignant bone tumor and a tumor generally
considered resistant to conventional chemo‐ and radiotherapy
(84). This type of tumor is characterized by the formation of a
HA-rich ECM which has been proposed to be associated with
drug resistance (85). Hamada et al. determined that, in
chondrosarcoma cells, inhibition of HA synthesis by 4-MU
suppressed cell proliferation, migration, and invasiveness, and
that, in vivo, daily administration of 4-MU markedly inhibited
local tumor growth and significantly suppressed the amount of
HA in tumoral tissue (55).

Regarding fibrosarcoma, another of the most common bone-
derived tumors, some reports have also shown a positive effect of
4-MU treatment on the sensitivity of cells to radiotherapy (56,
57, 86, 87). In primary solid tumors, external radiotherapy is
generally effective and non-invasive and improves local control
in the target region. However, although radiotherapy is an
effective adjuvant treatment, metastasis and radiation
resistance are associated with poor prognosis in patients (88).
Saga et al. have shown that 4-MU administration in combination
with exposure to 2-Gy ionizing radiation reduced HA
production, cell invasion and the metastatic potential of
fibrosarcoma cells in vitro (86), suggesting that 4-MU could be
a radio-sensitizing molecule. Besides, in a later study, these same
authors determined that the radio-sensitizing effect of 4-MU was
not completely associated with its inhibitory effect on HA
synthesis and that 4-MU improved the radiosensitivity of
fibrosarcoma cells by suppressing inflammation (56).
Specifically, they revealed that 4-MU increased the sensitivity
of fibrosarcoma cells to X-ray radiation by inhibiting the
production of the pro-inflammatory cytokines IL-1b, IL-6 (87),
IL-1a , IL-36g and IL-37 (56). Recently, the authors
demonstrated that the radio-sensitizing effects of 4-MU are
intrinsically related to the suppression of antioxidant activity
through previously discovered anti-inflammatory effects (57).

Even more, in a model of metastatic breast cancer, Urakawa et
al. determined that 4‐MU suppressed metastatic lesions of bone
in vivo and inhibited the expansion of osteolytic lesions and
intraosseous tumor growth in breast cancer xenograft models by
inhibiting HA accumulation in tumor tissues (49).

These results suggest that, in bone-derived tumors, 4-MU
could be a beneficial adjuvant during radiotherapy by inducing
radio-sensitization of tumor cells as a consequence of HA
synthesis inhibition as well as by an independent mechanism
associated with the modulation of inflammatory and
oxidative factors.

3.8 Melanoma
Melanoma is one of the three main types of skin cancer, being the
most serious form. The prognosis of melanoma has historically
been poor, with a median survival of less than 12 months, which
can be ascribed to the aggressive nature of the disease and low
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response rates to conventional chemotherapy (89). In recent
years, although major therapeutic advances have been made,
resistance to these new therapies has also emerged (90). Thus,
new treatment modalities are needed to improve the outcome,
and 4-MU is one of the candidate molecules for use in new
therapeutic strategies. In this sense, different studies have
evaluated the potential role of 4-MU as a modulator of
melanoma progression.

Kudo et al. demonstrated that 4-MU inhibits the formation of
cell surface HA by B16F-10 melanoma cells and its release into
the culture medium. These authors also showed that 4-MU had
no significant cytotoxic effects on cell growth, but inhibited the
adhesion and locomotion abilities of melanoma cells in a dose-
dependent manner (58). Since adhesion and locomotion are
involved in the early stages of metastasis, these results suggest
that HA-rich matrices adjacent to melanoma cells provide a
suitable environment for metastasis. In line with these findings,
Yoshihara et al. evaluated the role of 4-MU in melanoma
metastasis in vivo, by pre-treating melanoma cells with 4-MU
before mouse inoculation, showing both decreased cell surface
HA formation and suppression of metastasis after injection (59).
These authors also demonstrated that oral administration of 4-
MU to mice decreased liver HA content, which also contributed
to a suppressed liver metastasis (59). Thus, in agreement with the
data published by Kudo et al. (58), both cell surface HA of
melanoma cells and recipient liver HA can promote liver
metastasis of melanoma in vivo (59), strongly supporting 4-
MU as a potential anti-metastatic agent in a highly malignant
tumor as melanoma.

Another interesting study that reinforces the anti-invasive
role of 4-MU was carried out by Edward et al. These authors
showed that 4-MU inhibited tumor cell growth and the
activation of stromal HA synthesis by melanoma cell-derived
factors (91). Specifically, they demonstrated that 4-MU caused a
dose-dependent growth inhibition of fibroblast and melanoma
cells. The inhibition of cell growth was more pronounced when
fibroblasts were stimulated with C8161 melanoma cell-
conditioned medium (91). In addition, 4-MU reduced the level
of HA in fibroblast-contracted collagen lattices, and inhibited
both the growth of melanoma cells and invasion into the lattices
(91). These results allow concluding that 4-MU has an anti-
proliferative effect on the melanoma microenvironment, not only
suppressing HA synthesis, but also inhibiting the induction of
stromal HA accumulation and the proliferation offibroblasts and
melanoma cells.

Based on its growth-inhibitory activities against melanoma
cells, Abildgaard et al. have recently proposed 4-MU as a new
drug candidate for melanoma treatment and combination with
chemotherapy (60). These authors showed that 4-MU affected
cellular metabolism through inhibition of glycolysis and
increased ROS production, suggesting the involvement of
oxidative stress in the cellular response (60).

3.9 Glioblastoma
Glioblastoma (GBM) represents the most malignant and deadly
brain tumor in adults (92). Despite invasive treatment strategies,
involving a triad of surgery, radiation and chemotherapy,
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patients inevitably relapse due to resistance and invasion within
the brain parenchyma and succumb within 15 months post-
diagnosis (92). It is noteworthy that the ECM of malignant
gliomas, like GBM, contains higher amounts of HA than normal
brain tissue, indicating that HA could be instrumental for tumor
adhesion and invasion (93, 94). It has been proposed that the
aggressiveness of GBM depends on the co-expression of HAS
and hyaluronidases (95). In this sense, based on the fact that 4-
MU is a small molecule able to cross the blood brain barrier (96),
Pibuel et al. proposed its use as an interesting therapeutic
strategy to complement GBM treatment (65). These authors
demonstrated that, in the GL26 murine GBM cell line, 4-MU
diminished HA synthesis while increasing apoptosis and
decreasing cell proliferation and migration (66). Yan et al.
found that alterations in HA metabolism, by silencing HAS3
or by treating with 4-MU, inhibited glioma cell proliferation by
affecting the autophagy flux (67). Although these new results are
encouraging, more investigations are needed to understand the
action and mechanism of 4-MU in GBM cells.

3.10 Chronic Myeloid Leukemias
Leukemia is the general name for cancer that involves blood-
forming cells. Among them, Chronic myeloid leukemia (CML) is
a type of cancer where the myeloid lineage is affected and
comprises a group of myeloproliferative neoplasms. In 2020,
approximately 15% of new cancer cases diagnosed in adults in
the USA were leukemias (97). Most patients have typical
cytogenetic alterations, the Philadelphia chromosome (Ph1),
and the BCR/ABL rearrangement, the latter of which produces
an abnormal tyrosine kinase and allows the specific treatment
with inhibitors of this kinase. However, a group of patients can
be Ph1-negative and have worse prognosis and shorter survival
than Ph1-positive patients. This group thus needs special
attention to find a successful therapy. Although there are
different well-established therapeutic strategies to control CML
progression (98), some studies have analyzed the potential role of
4-MU in CML. Ban et al. demonstrated that 4-MU is able to
induce apoptosis in K562 CML cells by activating the intrinsic
apoptosis pathway (61). These authors found that treatment with
4-MU leads to apoptosis in K562 cells through poly (-ADP-
ribose) polymerase (PARP) cleavage and alteration of the
mitochondrial membrane potential (61). Interestingly, they
also observed that the addition of exogenous soluble HA
protects K562 cells from 4-MU-induced apoptosis (61), which
suggests that the pro-apoptotic effect of 4-MU demonstrated on
CML cells is directly related to the inhibition of HA synthesis. In
line with this study, the same research group later demonstrated
the molecular mechanism by which 4-MU promotes apoptosis in
CML cells (62). They showed that 4-MU treatment induced
caspase-dependent apoptosis characterized by diminished HA
synthesis, in correlation with increased phosphorylation of p38
and PARP cleavage (62). These authors also showed the pro-
apoptotic effect of 4-MU in vivo, where treatment of tumor-
bearing mice with 4-MU significantly reduced tumor growth
through the induction of apoptosis (62). These results, together
with those of other studies, determine the role of 4-MU as a
molecule that favors the response of CML to chemotherapy
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(63, 64) and suggest that 4-MU is an excellent candidate for use
in combination with conventional therapeutic strategies.
4 EFFECTS OF 4-MU ON SPECIFIC
COMPONENTS OF THE TUMOR
MICROENVIRONMENT

Thanks to the numerous advances in the understanding of tumor
biology and cancer progression, it is well known that the
microenvironment where a tumor resides and develops is just
as important and critical for its growth as tumor cells themselves.
Therefore, it has been proposed that the modulation of the tumor
microenvironment (TME) is particularly important to improve
tumor response to cancer therapies (99). The TME is composed
of non-cellular and cellular components. For decades, the specific
role of non-cellular components of this microenvironment has
been studied, focusing on the ECM components which can
modulate tumor behavior. Even more, several functions of the
different cell types associated with the tumor, such as immune
cells, endothelial cells and mesenchymal stem cells, have been
demonstrated. The modulation of the TME caused by 4-MU
treatment is summarized in Figure 1.

4.1 Effects of 4-MU on Tumor-Associated
Cells
4.1.1 Tumor-Associated Fibroblasts
The cellular components of the TME include not only tumor
cells themselves, but also cancer-associated fibroblasts (100, 101).
Some authors have described that the interactions between
tumor cells and associated stromal fibroblasts stimulate the
synthesis of HA, which, as already mentioned, is present in
large amounts in several types of tumor (102, 103). Recently,
Cheng et al. showed that co-cultivation of PDAC cells and
stromal fibroblasts increased HA production, resulting in a
marked increase in the migration of PDAC cells (39).

Other authors have also shown that increased levels of HA in
the tumor stroma are associated with poor prognosis (31, 104). In
this sense, Urakawa et al. analyzed the effect of 4-MU on tumor
stromal cells, particularly in a murine fibroblast cell line, and
showed that 4-MU decreased HA levels, cell growth and motility
of fibroblasts (49). Also, in a murine bone metastasis model of
breast cancer, these authors showed that 4-MU administration
decreased the accumulation of HA around both tumor and
stromal cells, being well marked in the regions adjacent to bone
which correspond to the stroma, where fibroblasts are generally
abundant (49). In line with these results, Edward et al. showed that
4-MU inhibited fibroblast growth and reduced HA levels in
fibroblast-contracted collagen lattices, which in turn inhibited
both the growth and invasion by melanoma cell culture in this
condition (91), indicating that the remodeling of the tumor stroma
affects tumor development and metastatic capacity.

4.1.2 Macrophages
Macrophages (MØ) are the main infiltrating immune cells of the
TME. They differentiate from monocytes of systemic circulation
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in response to different stimuli from the environment and can
exhibit two phenotypic profiles, M1 and M2. Despite these cells
present high plasticity, MØ classically can be identified as M1
cells, that actively express HLA-DR and CD197 and have
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intrinsic phagocytosis capacity. Contrary, M2 cells express high
levels of CD163, CD209, CD206 and CCL2 with anti-
inflammatory functions (105). Specially, tumor-associated
macrophages (TAMs) can be considered as M2-like phenotype
FIGURE 1 | Effect of 4-MU treatment on the components of the tumor microenvironment.
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due to anti-inflammatory cytokines of the TME. They can induce
angiogenesis and lymphangiogenesis, by the release of growth
factors like VEGF, FGF, PDGF and TGF-b and matrix-
remodeling proteases. Moreover, they can suppress adaptive
and innate immune responses by the release of anti-
inflammatory factors like IL-10, TGF-b, and PD1L (106).
Therefore, TAMs promote the growth and spread of tumor
cells and reduce patient’s survival. Because of this, TAMs have
been proposed as therapeutic targets for cancer therapy.
Additionally, HA from the tumor ECM can modulate MØ
adhesion, migration and activation through its surface
receptors, depending on the size of the molecule. It is well
known that low-molecular-weight HA stimulates the
expression of inflammatory cytokines and chemokines and
growth factors (107). The interaction between receptors such
as CD44 and TLR and HA fragments induces the expression of
inflammatory mediators in murine and human macrophages
(108, 109) and can act as a danger signal by promoting antigen-
specific T-cell response (110). On the other hand, high-
molecu la r -we igh t HA has an t i - inflammatory and
antiproliferative properties, like regulatory T-cell activation
(111, 112). At our lab, in a breast cancer model, we have
previously demonstrated that high-molecular-weight HA
promotes MØ pro-angiogenic capabilities (113). For this
reason, HA-inhibitors like 4-MU could be a promising
therapy. However, the effect of 4-MU on immune cells in the
context of cancer is poorly studied. In an atherosclerosis in vivo
model, Nagy et al. showed that 4-MU oral administration in mice
led to a significant increase in MØ recruitment in atherosclerotic
lesions, promoting an inflammatory response and the
development of the disease (26). In addition, Rodrıǵuez et al.
demonstrated that long-term 4-MU oral administration in mice
with hepatocarcinoma caused, in MØ, an increase in the
secretion of pro-inflammatory cytokines, IL-1b and TNF-a,
and a decrease in anti-inflammatory cytokines, IL-10 and
TGF-b, indicating the polarization of these cells towards an
M1 profile in tumor and non-tumor regions. These examples
demonstrate that 4-MU action over immune cells is
context-dependent.

4.1.3 Endothelial Cells
Endothelial cells are involved in angiogenesis, i.e. the formation
of new blood vessels by sprouting from preexisting vessels. In
tumors, this process is essential as it allows their growth and
dissemination. Although this process is targeted by different
therapeutic drugs approved for use in cancer, development of
resistance has been observed. Thus, since 4-MU can affect
endothelial cell behavior, it could be a good strategy to
maximize anti-angiogenic therapy (114). Garcia-Vilas et al.
have shown evidence of action of 4-MU over endothelial cells.
These authors observed that 4-MU inhibited cell growth, was
able to generate new vessels without affecting the migration
capacity, and enhanced the expression of metalloproteinases
(25). Finally, by using different angiogenesis models in vivo,
they observed that 4-MU led to a significant reduction of this
process (25). In an HCC model, Piccioni et al. found evidence of
4-MU effect on endothelial cells in the TME (27). They observed
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that 4MU-treated mice showed significantly diminished systemic
levels of VEGF and expression of the specific vascular marker
CD31. They also found that 4-MU was able to inhibit endothelial
cell migration and tube formation, demonstrating that 4-MU has
an anti-angiogenic activity in HCC (27). Similar results have
been observed in a model of prostate cancer (44). However, since
little is known about the direct action of 4-MU over endothelial
cells in cancer, this topic should be further explored.

4.2 Effects of 4-MU Treatment on the
Non-Cellular TME
The ECM is the non-cellular component of the TME. During
embryonic development and organ homeostasis, the
composition of the ECM is tightly regulated. However, in
diseases such as cancer, it is usually deregulated and
disorganized, and undergoes extensive remodeling, acting as a
key player driving disease progression (76, 115). In this sense,
extremely high interstitial fluid pressures and a dense ECM
combine to limit the delivery and distribution of therapeutic
agents in solid tumors (116). In addition, high concentrations of
HA cause an expansion of the ECM, which contributes to
increased tumor interstitial pressure, which retards the delivery
and distribution of drugs from the vessels into the tumor (117–
120). Therefore, strategies to remove HA or block its synthesis
may improve drug delivery into solid tumors. In this sense,
several studies have shown that the inhibition of HA synthesis by
enzymatic agents, like PEGylated recombinant hyaluronidase
(PEGPH20), normalize interstitial fluid pressure and re-expand
the microvasculature, improving the delivery, distribution and
accumulation of drugs in tumors (117–119). Regarding this,
Dufort et al. showed that the systemic treatment of mice with
PEGPH20 reduced the extracellular levels of HA and interstitial
pressure, thus removing a significant barrier for drug delivery in
PDAC (117). Other authors also showed that the treatment with
PEGH20 in vivo reduces HA content, induces the re-expansion
of the microvasculature, and consequently improves gemcitabine
and DOX uptake in murine PDAC (118, 119). This example
demonstrates the potential of targeting the ECM/stroma and
modulating the mechanical properties of the surrounding
microenvironment, as an anti-PDAC therapy.

Unfortunately, recent research has shown that the promising
results obtained for PEGH20 in a phase I/II clinical trial in
PDAC (121) did not translate into the subsequent phase III study
HALO 301 (122) and further development of this drug was
stopped. This highlights the importance of looking for other
strategies that allow blocking HA synthesis. In this context, the
use of 4-MU may be a promising strategy. An interesting
research has shown that 4-MU significantly reduced the
amount of tumor HA, leading to a significant decrease in
tumor interstitial pressure and achieving improved tumor
perfusion in murine colorectal carcinoma (36). Similarly, as
described above, in a model of pancreas tumor, 4-MU was able
to remodel the ECM-generated interstitial gap within the tumor
cell by inhibiting HA production (72).

However, it is likely that 4-MU can also affect the synthesis
and organization of other ECM components, such as other non-
cellular components of the TME. In this regards, Keller et al.
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found that 4-MU reduced both versican and fibronectin in
trabecular meshwork cells of the eye (123). Even more,
Andreichenko et al. confirmed that 4-MU inhibits ECM
deposition by directly affecting the production not only of HA,
but also of Col1a, a major form of collagens contributing to ECM
remodeling in liver fibrosis (124). It was observed that other
glycosaminoglycans, such as chondroitin and heparin sulfates,
were sensitive to 4-MU treatment in epidermal keratinocyte
cultures. In this sense, a 4-MU concentration-dependent
dec r e a s e was f ound in the p roduc t i on o f the s e
glycosaminoglycans, although the effect was greater on HA In
epidermal keratinocyte cultures, Rilla et al. observed that other
glycosaminoglycans, such as chondroitin and heparin sulfates,
were sensitive to 4-MU treatment. They found that the
production of these glycosaminoglycans decreased in a 4-MU
concentration-dependent manner, although the effect was
greater on HA (125). In addition, an effect of 4-MU on matrix
metalloproteinases (MMPs), a family of proteolytic enzymes that
degrade many ECM components and play an important role in
tissue degradation and remodeling under various physiological
and pathological conditions, has been observed. Nakamura et al.
reported that, in human skin fibroblasts, 4-MU induces MMP2
activation (126). Surprisingly, in pathological conditions, 4-MU
shows a differential effect. Nakamura et al. reported that, in a
human lymphoma cell line as well as in other cultured human
carcinoma cells, 4-MU inhibited MMP9, an inhibition that could
not be mimicked by treatment of the cells with hyaluronidase
(127). These studies show that 4-MU may target ECM
components other than HA. Even more, as described above, in
a model of fibrosarcoma cells, 4-MU was able to remodel the
surrounding TME by inhibiting the production of pro-
inflammatory cytokines, altering other non-cellular
components of the TME, different from the ECM (56, 87).

Although many reports have highlighted the importance of 4-
MU in inhibiting HA synthesis, it could also be affecting the
synthesis of other ECM components like proteoglycans and have
biological effects on soluble tumoral factors. In fact, further
studies about its effect on other non-cellular components of
the TME, their interaction, and their role in cancer pathogenesis
will be necessary. For example, it will be interesting to investigate
the impact of 4-MUmodulation over different ECM components
and the mechanical properties of the surrounding TME.
5 4-MU TREATMENT AS A NEW
STRATEGY OF CO-ADJUVANT DRUG ON
CONVENTIONAL ANTINEOPLASTIC
THERAPIES

One of the most important challenges of antineoplastic therapies
is to adjust the treatment to the needs of each patient and reduce
the toxicity caused by conventional antitumoral strategies.
Several scientific studies have reported the key role of the
pericellular HA-rich ECM as a biological barrier in the TME.
Among the processes controlled by this natural barrier are the
modulation of immune effectors (35, 113), the inhibition of
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diffusion of chemotherapeutic drugs (128) and the difficult
uptake of DNA transgene complexes in gene therapy (129).
Furthermore, previous studies from our laboratory and other
authors have shown that ECM components play important roles
in acquired resistance to anticancer drugs (34, 130, 131).
Therefore, the development of novel cancer treatments that
target HA by altering the ECM represents a pioneering
approach to the treatment of several cancers.

According to the evidence collected so far, 4-MU represents
one of the candidate molecules for drug repositioning in cancer
therapy. While the potential advantage of 4-MU as an adjunct in
cancer therapy could improve therapeutic efficacy and reduce
toxicities, the greatest challenge is the lack of strong scientific
evidence to support its approval. Therefore, crucial human
clinical studies have yet to be performed to respond to this
need. Nevertheless, numerous scientific reports in the early
stages of research have studied the role of 4-MU as a co-
adjuvant of conventional antineoplastic treatments. Since it has
been previously demonstrated that 4-MUmediates the inhibition
of HA synthesis and pericellular HA matrix formation, this
molecule would increase the efficacy of anticancer treatments.

In a study of alternative therapies applicable to pancreatic
cancer, Nakazawa et al. showed that pre-treatment of KP1-NL
cells with 4-MU increased the anticancer effect of gemcitabine
(40). Particularly, these authors showed that pancreatic cancer
cells are enclosed by HA-rich coats, and that 4-MU treatment
inhibited the formation of HA pericellular coat, which promoted
the perfusion and uptake of gemcitabine (41). These results were
also confirmed in an in vivo murine model, where co-
administration of 4-MU and gemcitabine to tumor-bearing
mice reduced the size of the primary and metastatic tumors
(40). These data suggest that the combination of 4-MU and
gemcitabine is effective against human pancreatic cancer cells
and tumor progression in vivo. Regarding the possible use of 4-
MU as a modulator of chemotherapy in pancreatic cancer,
Yoshida et al. found a similar effect in combination with 5-
fluorouracil (5-FU) (42). These authors showed that 4-MU
administration changed the antitumor efficacy of 5-FU,
enhancing its cytotoxicity in vitro and in vivo and that
combined treatments of 5-FU and 4-MU inhibited cell
proliferation and enhanced the intracellular concentration of
5-FU in vitro (42). In the in vivo model, the authors found that
mouse tumors treated with 5-FU and 4-MU decreased in size
and animal survival was prolonged, in addition to a decrease in
the cohesiveness of the intercellular space, which favored 5-FU
perfusion and activity (42).

These findings are consistent with a recent study showing that
chemotherapy with carboplatin (CBP) induces HA synthesis,
which can contribute to chemoresistance by regulating ABC
transporter expression in ovarian cancer (132). Specifically, this
study determined that, in combination with CBP, 4-MU treatment
significantly decreased ovarian cancer cell survival and increased
apoptosis compared to CBP alone (132). In addition, this
combined treatment reduced the expression of cancer stem cell
markers such as ALDH1 and ABCG2 (132). Furthermore, 4-MU
inhibits the invasion ability of chemoresistant primary cells in vivo,
demonstrating that HA inhibition is a promising new strategy to
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overcome chemoresistance and improve ovarian cancer
survival (132).

The effect of 4-MU as a promoter of chemotherapeutic
treatment has also been determined in other types of tumors
such as glioblastoma, the most frequent primary tumor of the
central nervous system (133). In this work, the potential
antitumor effect of 4-MU was tested in combination with
temozolomide on GL26 glioblastoma cells. As expected, 4-MU
decreased HA synthesis, but also diminished cell proliferation
and induced apoptosis while reducing cell migration and the
activity of MMPs. Besides, 4-MU sensitized GL26 cells to the
effect of temozolomide and showed selective toxicity in tumor
cells without exhibiting neurotoxic effects, highlighting its
potential usefulness to improve glioblastoma treatment (66).

Another antineoplastic strategy mainly used for cancer
treatment is radiotherapy. In this regards, 4-MU has been
proposed as a positive modulator of radiotherapy response in
fibrosarcoma. Saga et al. reported that co-administration of 4-
MU enhanced the lethality of X-ray irradiation in HT1080
human fibrosarcoma cells and decreased their invasiveness
(86). After that, the authors continued investigating the
molecular bases of their discovery and found that co-
administration of 4-MU suppressed the activation of IL-6 and
IL-8 after X-ray irradiation (86). Similar results have been
observed for the upstream signaling component IL-1 (87).
These results indicate that the radiosensitivity of fibrosarcoma
cells is improved by suppressing inflammation through the
administration of 4-MU.

Consistent results have also been found when evaluating 4-
MU as a co-adjuvant of antineoplastic therapies against
melanoma and CML. In the case of melanoma, one of the
therapeutic strategies is based on the inhibition of the BRAF
oncogene, since the most prevalent BRAFmutation in melanoma
is directly associated with cellular metabolic reprogramming by
the Warburg effect (134, 135). Therefore, treatment with BRAF
inhibitors reverses the Warburg effect and stimulates
mitochondrial activity, which favors disease control (136, 137).
In this regards, Abildgaard et al. demonstrated that 4-MU
potentiates the antitumor effect of the BRAF inhibitor
vemurafenib (60). Particularly, they found that the
combination of 4-MU and vemurafenib was more effective in
reducing viability of ED-013 and ED-196 melanoma cells than
vemurafenib treatment alone, inducing cell cycle arrest in G1
phase. These authors also found that 4-MU plus vemurafenib
treatment increased the cellular production of ROS (60).

Similarly, different studies have proposed 4-MU as a
candidate molecule for co-adjuvant treatments for CML.
Uchakina et al. showed that 4-MU sensitizes K562 cells to
doxorubicin treatment, by inhibiting HA synthesis and
increasing apoptosis rates through p38 activation and PARP
cleavage (63). Lompardıá et al. found similar results when
combining 4-MU treatment with the chemotherapeutic agent
vincristine on K562 and K562 vincristine-resistant cells (Kv562)
(64). These authors revealed that 4-MU decreased tumor cell
proliferation and sensitized Kv562 resistant cells to vincristine
effect and determined that 4-MU effect was related to the
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inhibition of P-glycoprotein and the induction of senescence
(64). These results support the potential use of 4-MU for
combination of therapies in cancer and may encourage
precl inica l val idat ion and cl inica l test ing of such
treatment strategies.
6 4-MU REPURPOSED FROM A DIETARY
COMPONENT TO AN ANTICANCER
DRUG: POTENTIALS FOR ITS
REPOSITIONING

By definition, “drug repositioning” is a method that can help the
conventional drug discovery process by using existing drugs for
treatment of a different disease instead of their original
indication (138). During the COVID-19 pandemic, it has been
shown that this reasoning about the reuse of drugs is an effective
and fast way to provide a treatment solution in a short time
(139). The integration of bioinformatics data tools or “Big Data”
(-omic data, sequencing DNA/RNA, molecular modeling, tumor
biobanks, clinical trials, etc.) and experimental data offers the
possibility to identify how feasible drugs are to be reused (138).
4-MU, originally identified as a hepatoprotective component,
could be considered for this purpose and be now used as an
antitumoral drug. The results described in this review suggest
that this drug could be a good option to improve efficacy and
reduce toxicity of current cancer treatment.
7 CONCLUSIONS AND PERSPECTIVES

The mechanisms of action of 4-MU are not yet known in detail.
However, different results suggest that some of these mechanisms
may be independent of HA synthesis inhibition. In this sense, over
the last years, some authors have described HA-independent
effects for 4-MU toxicity (13, 75). For example, in trabecular
meshwork cells of the eye, Keller et al. found that 4-MU reduced
the ECM components versican and fibronectin, and that the
addition of exogenous HA failed to reverse the effects of 4-MU
(123). Since versican and fibronectin can affect tumor progression
and development (140), it is likely that 4-MU can also affect the
synthesis and organization of other ECM components to mediate
its effects in tumor cells. However, more studies are required to
corroborate this hypothesis. Together, these reports reinforce that
4-MU may have different anti-tumor mechanisms depending on
the type of cancer. However, toxicological, pharmacokinetic and
pharmacodynamic aspects that determine the treatment regimen
(way of administration, doses that impact on its bioavailability,
time of interval between them and schedule) should be extensively
reviewed in preclinical studies. An important study performed by
Kuipers et al. in an EAE mouse model determined that, to observe
a systemic decrease in HA levels, 4-MU should be administered
for 7 days or more and that longer use does not completely reduce
HA levels (141). Besides, they observed that, after oral
administration, 4-MU is rapidly metabolized to 4-MUG and in
October 2021 | Volume 11 | Article 710061
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minor proportion to 4-MUS and, since there is a low
bioavailability of 4-MU, high doses are required to reach a
considerable percentage at systemic level (141). Thus, its
metabolites and bioavailability are important points to be
considered in the use of 4-MU without risk of toxic effect. In
fact, Nagy et al. showed that 4-MUG is a bioactive metabolite that
can be hydrolyzed into 4-MU and that 4-MUG also had effects
similar to those of 4-MU in vivo (142), suggesting that studies
using 4-MU should rethink the concept of its bioavailability.

All these reports suggest the feasibility of using 4-MU in cancer
treatment. However, deepening the knowledge of its mechanisms
of action and other pharmacological aspects will allow its
application in clinical trials and its consideration as a therapeutic
option, in combination or not, in current oncology treatments.
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