

Caracterización estructural y evolutiva de la adaptación funcional del proteoma de *Trichoderma harzianum*

Lic. María Belén Aguer Director: Dr. Gustavo Parisi

Índice

Resumen	3
Agradecimientos	4
Abreviaturas, Programas, Servidores y Bases de datos	5
Abreviaturas	5
Programas, Servidores y Bases de datos	6
Capítulo 1: Introducción	8
Antecedentes históricos de biocontroladores	8
Origen de la especie	11
Otros nichos ecológicos de Trichoderma harzianum	12
Descripción de los organismos objetivo	13
Modo de acción	13
 (i) Efecto directo: micoparasitismo y antibiosis mediados por la secreción de enzimas que degradan la pared celular y sustancias antifúngicas.) 13
(a) Péptidos no ribosomales - peptaibols	20
(b) Péptidos no ribosomales: sideróforos	21
(c) Producción de metabolitos secundarios de bajo peso molecular	21
(d) Presencia de micotoxinas	21
 (ii) Efecto indirecto: competencia por nichos y nutrientes e inducción de resistencia en plantas 	22
Etapas de desarrollo y ciclo de vida del microorganismo	23
Capacidad de infectividad, dispersión y colonización	24
(i) Colonización de raíces de plantas por <i>Trichoderma</i> , supervivencia y dispersión	24
 (ii) Efecto de los factores ambientales sobre la capacidad de crecimiento y colonización o Trichoderma 	le 26
Descripción global de la metodología utilizada	26
Hipótesis	28
Objetivos	28
Capítulo 2: Caracterización secuencial y evolutiva de proteínas involucradas en mecanisn	nos

de biocontrol	29
Resumen	29
Introducción	29
Búsquedas bibliográficas	31
Caracterización de las proteínas biocontroladoras de referencia	32
Análisis de las proteínas biocontroladoras de referencia en base a sus características secuenciales	; 34
Búsquedas por similitud secuencial para extender el número de proteínas biocontrolador	as de
referencia	35
Definición especies de interés	35
Selección de proteomas	36
Búsquedas de similitud secuencial	36
Análisis de organismos de referencia de cada grupo	39
Análisis de proteínas de "Biocontroladores fúngicos"	43
¿Tienen alguna particularidad especial las proteínas biocontroladoras de referencia?	44
Comentarios adicionales sobre velocidades de evolución	48
Conclusiones	51
Capítulo 3: Detección de selección positiva como herramienta para caracterizar proteí	nas 52
Posumon	52
Introducción	52
Obtonción de los datos a estudiar	52
Obtenición de los datos para la astimación de calegoión positiva	55
Anliagoién de modeles exelutives para detector selección positiva	57
Aplicación de modelos evolutivos para detectar selección positiva Resultados del anélicia de selección positivo	57
Comparación de las conjuntos de proteínes biocontroladores estimodos por los métodos	50
aplicados en este capítulo y el anterior	59
Conclusiones	60
Canítulo 4: Caracterización estructural, evolutiva y secuencial de la proteína 8-1 3-	00
glucanosiltransferasa	61
Resumen	61
Introducción	61
Caracterización secuencial de la β -1,3-glucanosiltransferasa (A0A0F9ZQX2) de <i>T. harzia</i>	anum 65
Caracterización estructural	67
Posible rol de las posiciones con selección positiva	71
Conclusiones	73
Capítulo 5: Conclusiones generales y perspectivas	75
Bibliografía	77
Apéndice	90

Resumen

El aumento sustancial en la producción de alimentos provenientes de cultivos extensivos (trigo, maíz, soja, etc.) ayudó a satisfacer las necesidades de seguridad alimentaria mundial. Sin embargo, problemas como el calentamiento global, la contaminación ambiental, el uso poco racional de los suelos y del agua (Pandya 2010), la aparición de patógenos resistentes y la explosión demográfica, han generado varios tipos de estrés biótico y abiótico en las plantas, que son responsables de la pérdida de rendimiento de hasta el 31-42% (Moustafa-Farag et al. 2019) y generan gran preocupación para el bienestar de nuestras futuras generaciones.

Las especies de *Trichoderma* se encuentran entre los agentes de control biológico microbiano más utilizados en la agricultura. *Trichoderma* spp. es un hongo filamentoso con capacidad de controlar otros hongos patógenos que afectan a los cultivos a través de micoparasitismo, entre otros mecanismos de acción. El uso de *Trichoderma* spp. ha permitido la producción comercial de agentes de control biológico para la protección de plagas, la mejora del crecimiento de los cultivos y el desarrollo de la agricultura sostenible en diferentes regiones del mundo. A pesar de sus múltiples aplicaciones, los mecanismos metabólicos y bioquímicos de la capacidad de biocontrol de *Trichoderma* están escasamente caracterizados.

En este trabajo, comenzamos con una extensa búsqueda bibliográfica sobre proteínas del género Trichoderma con evidencia empírica de su participación en su rol de biocontrol. Recolectamos proteínas a las que denominamos de "referencia", con las que generamos una base de datos curada a la que llamamos "Biocontrol". Seguidamente, extendimos el número de proteínas pertenecientes a esta base de datos, realizando búsquedas por similitud secuencial en genomas de microorganismos evolutivamente cercanos. En este análisis, detectamos una propiedad común, la velocidad de evolución, que puede ser utilizada en forma extensiva para caracterizar nuevas proteínas con posible rol biocontrolador. Más aún, encontramos que los genes de Trichoderma evolucionaron más rápidamente cuando realizamos comparaciones con las especies cercanas. lo que indicaría adaptaciones funcionales a su rol biológico. Sabiendo esto, estimamos la presencia de selección positiva a nivel de rama o cluster evolutivo, así como también a nivel de secuencia, utilizando un método recursivo para seleccionar diferentes conjuntos de proteínas ortólogas para diferentes especies relacionadas con Trichoderma harzianum, habiendo construido previamente alineamientos de regiones codificantes y alineamientos de proteínas correspondientes para cada conjunto. Con este procedimiento, pudimos identificar nuevas proteínas involucradas en el rol biológico de nuestra especie objetivo. Entre las proteínas encontradas, detectamos a la β-1,3-glucanosiltransferasa que interviene en la remodelación de la pared celular de hongos y se ha demostrado su rol en la patogenicidad del hongo patógeno. Utilizando distintos recursos bioinformáticos basados en información estructural, evolutiva y secuencial, caracterizamos la proteína y pudimos acumular evidencias sobre el posible impacto de la selección positiva sobre la relación estructura-función, comparándola con una homóloga de Saccharomyces cerevisiae. Con este análisis, pudimos teorizar la posible adaptación funcional al rol biológico de *T. harzianum* e implementar los pasos a seguir para el análisis de otras proteínas que puedan ser de interés.

Agradecimientos

A Gustavo, por su enorme vocación, su pacencia, sus enseñanzas y por TODO.

A Dami, por acompañarme y alentarme siempre.

A Amina, por ser mi escolta número uno.

A herma, Mani y Pare, por creer más en mí que yo misma.

A Lau, por el comienzo y por las risas.

A Rizobacter, por darme oportunidades y dejarme crecer.

Abreviaturas, Programas, Servidores y Bases de datos

A continuación, listamos las abreviaturas utilizadas en el trabajo. Seguidamente, detallamos los programas y servidores empleados y bases de datos consultadas con su correspondiente acceso. En ambos casos, el orden de aparición es alfabético.

Abreviaturas

ACCD	Ácido 1-aminociclopropano-1-carboxílico
BCA	Agente de Control Microbiano (Biological Control Agent, en inglés)
BF	Biocontroladores fungicidas
BI	Biocontroladores insecticidas
CAI	Índice de Adaptación de Codones (Codon Adaptation Index, en inglés)
CWDE	Enzimas que degradan la pared celular (Cell Wall Degrading Enzymes, en inglés)
GLS	Glucansintasas
GPI	Glicosil fosfatidil inositol
GTs	Glicosiltransferasas
IAA	Ácido 3-acético
ISR	Inducir resistencia sistémica (Induce Systemic Resistance, en inglés)
MAMP	Patrones moleculares asociados a microbios
ML	Máxima verosimilitud (Maximum Likelihood, en inglés)
Ρ	Patógenos
PRR	Receptores de reconocimiento de patrones
ROS	Especies reactivas de Oxigeno (Reactive Oxigen Species, en inglés)

- **SAR** Resistencia sistémica adquirida (*Systemic Acquired Resistance*, en inglés)
- **SM** Metabolitos secundarios (*Secondary Metabolites*, en inglés)

Programas, Servidores y Bases de datos

AlphaFold2	https://alphafold.ebi.ac.uk/
BLAST	https://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastHOME
CAZY	http://www.cazy.org/
cd-hit	http://cd-hit.org
Clustal	https://www.ebi.ac.uk/Tools/msa/clustalo/
ColabFold	https://colabfold.mmseqs.com/
E-CAI	http://genomes.urv.es/CAIcaI/E-CAI/
Genedoc	https://nrbsc.org/gfx/genedoc
Hhpred	https://toolkit.tuebingen.mpg.de/tools/hhpred
Infostat	https://www.infostat.com.ar/
Interpro	http://www.ebi.ac.uk/interpro/
IUPred	https://iupred2a.elte.hu/
JGI	https://mycocosm.jgi.doe.gov/mycocosm/home
MobiDB	https://mobidb.bio.unipd.it/
NCBI	https://www.ncbi.nlm.nih.gov/

- NetGPI https://services.healthtech.dtu.dk/services/NetGPI-1.1/
- OMA https://omabrowser.org/oma/home/
- PAL2NAL <u>https://bio.tools/pal2nal</u>
- PAML <u>https://bio.tools/paml</u>
- PDB <u>https://www.rcsb.org/</u>
- Pfam <u>http://pfam.xfam.org/browse</u>
- PhyML
 https://bio.tools/phyml
- PredGPI
 https://bio.tools/predgpi
- PubMed <u>https://pubmed.ncbi.nlm.nih.gov/</u>
- Rate4site https://www.tau.ac.il/~itaymay/cp/rate4site.html
- SignalP <u>https://bio.tools/signalp</u>
- T-Coffee <u>https://tcoffee.crg.eu/</u>
- Timetree <u>http://timetree.org/</u>
- TMHMM https://services.healthtech.dtu.dk/services/TMHMM-2.0/
- UNIPROT <u>https://www.uniprot.org/</u>

Capítulo 1: Introducción

Antecedentes históricos de biocontroladores

Se prevee que para 2050, la población total del mundo alcanzará aproximadamente 9.100 millones de personas. Por este motivo, se calcula que es necesario un aumento de alrededor del 70% en la producción de alimentos para alimentar a esta creciente población mundial (Food And Agriculture Organization Of The United Nations 2009). El aumento sustancial en la producción de granos alimenticios ayudó a satisfacer las necesidades de seguridad alimentaria mundial, pero problemas como el calentamiento global, la contaminación ambiental y la explosión demográfica han sometido a las plantas hacia varios tipos de estrés bióticos y abióticos que son responsables de la pérdida de rendimiento en gran medida, lo que constituye un tema de gran preocupación para el bienestar de nuestras generaciones futuras. Los factores de estrés biótico involucran hongos, bacterias, virus, nematodos, malezas e insectos, que causan una pérdida de rendimiento de hasta un 31-42% (Moustafa-Farag et al. 2019).

La forma usual de control tradicional de las enfermedades fúngicas en cultivos agrícolas es aplicar productos químicos, pero debido a su composición pueden resultar tóxicos e inespecíficos dañando la flora del suelo (Vinale et al. 2008). Por lo tanto, el desarrollo de nuevos agentes de control biológico de calidad para abastecer el mercado resulta un reto importante para los investigadores y la industria.

El control biológico fue descubierto por prueba y error y se lo practicó en la agricultura mucho antes de que el término mismo entrara en uso (Cook 1985). Un ejemplo es la antigua práctica de no cultivar los mismos cultivos en el mismo lote con una frecuencia menor que cada dos o tres años. Tal rotación de cultivos da tiempo para que la población de plagas o patógenos en el suelo disminuya por debajo de algún umbral económico debido a los efectos depredadores, competitivos y otros efectos antagónicos impuestos por la microflora y fauna asociadas. En otras palabras, la rotación de cultivos deja tiempo para que la microbiota natural del suelo pueda higienizar el suelo, especialmente en lo que se refiere a los parásitos de plantas más especializados y plagas de insectos que dependen en gran medida de su cultivo huésped para mantener sus poblaciones.

La era del control biológico moderno, que involucra la transferencia deliberada y disposición de enemigos naturales de las plagas de insectos, se lanzó hace 100 años con la introducción muy exitosa del escarabajo vidalia de Australia a California en 1888 para controlar la cochinilla algodonosa de los cítricos. En 1914, el patólogo Alemán C. F. von Tubuef escribió un artículo titulado "*Biologische Bekampfung von Pilzkrankheiten der Pflanzen*". Esta es aparentemente la primera referencia en la literatura científica al término "*Biologische Bekampfung*" o "control biológico" (Baker 1987).

DeBach y colaboradores (DeBach 1964) definieron el control biológico como "la acción de parásitos, depredadores o patógenos en el mantenimiento de la densidad de población de otro organismo en un promedio más largo de lo que ocurriría en su ausencia". Esta definición cubre algunos controles biológicos de plagas de insectos con enemigos naturales, pero no da cabida a algunos otros controles de gran éxito aceptados en otras disciplinas como ejemplos de control biológico. Por ejemplo, el virus de la tristeza de los cítricos se utiliza en Brasil para inocular los árboles de cítricos con el virus leve, que luego protege a los árboles contra cepas más severas (Costa 1980). La "protección cruzada" fue mostrada por primera vez por H. H. McKinney en 1929 por tener potencial para el control biológico de virus de plantas. Los fitopatólogos se refieren a la protección cruzada para el control de virus de plantas como control biológico.

Las especies de *Trichoderma* se encuentran entre los agentes de control biológico microbiano más utilizados en la agricultura. Su potencial se reconoció por primera vez a principios de la década de 1930 y en los años posteriores se ha agregado a la lista el control de muchas enfermedades (Howell 2003). Esto ha culminado en la producción comercial de varias especies de *Trichoderma* para la protección y mejora del crecimiento de cultivos en diferentes regiones del mundo.

Actualmente, en Argentina, existen 8 controladores biológicos registrados bajo la normativa 350/99 del SENASA¹ y 7 registrados bajo la normativa 1107/2009 de la Unión Europea² (Tabla 1). Se cita la Unión Europea, dado que es el organismo regulador con mayor exigencia regulatoria para evaluación y aprobación de insumos agrícolas conocido en la actualidad.

Tabla 1 Descripción general de *Trichoderma* spp. y su estado de aprobación bajo Res. 350/99 SENASA, Argentina y Reg. (CE) 1107/2009 en la Unión Europea.

Producto	Estado
<i>Trichoderma harzianum</i> 3,24 %,	Aprobado n°40723 bajo Res. 350/99
TropBioDERMA	SENASA, ARG
Trichoderma harzianum 3,24 %,	Aprobado n°40655 bajo Res. 350/99
TRICOMIL	SENASA, ARG
<i>Trichoderma harzianum</i> 48 %,	Aprobado nº40588 bajo Res. 350/99
TRICHODERMIL SC	SENASA, ARG
Trichoderma harzianum 3,24 %,	Aprobado n°40405 bajo Res. 350/99
ADVANCE BIO	SENASA, ARG
<i>Trichoderma harzianum</i> 0,1 %,	Aprobado n°39751 bajo Res. 350/99
HULKGREEN	SENASA, ARG

¹ Resolución-350-1999-SENASA - Servicio Nacional de Sanidad y Calidad Agroalimentaria

² Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant

Trichoderma harzianum 3,24 %,	Aprobado n°38908 bajo Res. 350/99
RIZODERMA Soja	SENASA, ARG
Trichoderma harzianum 3,24 %,	Aprobado n°38875 bajo Res. 350/99
RIZODERMA Trigo	SENASA, ARG
Trichoderma harzianum 3,24 %,	Aprobado n°38004 bajo Res. 350/99
RIZODERMA	SENASA, ARG
<i>Trichoderma asperellum</i> (formerly <i>T. harzianum</i>) strains ICC012, T25 and TV1	Aprobado bajo Reg. (EC) No 1107/2009, Unión Europea
<i>Trichoderma asperellum</i> (strain T34)	Aprobado bajo Reg. (EC) No 1107/2009, Unión Europea
<i>Trichoderma atroviride</i> (antes como <i>T. harzianum</i>) cepas T11 y IMI 206040	Aprobado bajo Reg. (EC) No 1107/2009, Unión Europea
Trichoderma atroviride cepa I-1237	Aprobado bajo Reg. (EC) No 1107/2009, Unión Europea
Trichoderma atroviride cepa SC1	Aprobado bajo Reg. (EC) No 1107/2009, Unión Europea
<i>Trichoderma gamsii</i> (antes como <i>T. viride</i>)	Aprobado bajo Reg. (EC) No 1107/2009,
cepa ICC080	Unión Europea
<i>Trichoderma harzianum</i> cepas T-22 y ITEM	Aprobado bajo Reg. (EC) No 1107/2009,
908	Unión Europea

La efectividad de *Trichoderma* spp. como terápico para tratamiento de semillas para control de patógenos de semillas ya estaba bien documentada en la década de 1980 (Hadar 1984) y se demostró que alcanzaba niveles de supresión de enfermedades posteriores a la emergencia de

cultivos, comparables a los de algunos fungicidas comerciales (Ramamoorthy, V.; Muthusamy, M. 1991). Desde entonces, muchos aislados de *Trichoderma*, la mayoría de ellos pertenecientes al complejo de especies de *Trichoderma harzianum*, fueron seleccionados por su capacidad para controlar patógenos transmitidos por semillas, incluidos los del trigo (Küçük et al. 2007; Hasan et al. 2012; Abo-Elnaga 2012; Dendouga et al. 2016; Xue et al. 2017). Además de disminuir las tasas de enfermedad, el tratamiento de semillas de cereales con estos agentes de control biológico puede reducir significativamente la contaminación del grano por micotoxinas (Rojo et al. 2007; Wiśniewska et al. 2011; Ferrigo et al. 2014b). Por ejemplo, Ferrigo (Ferrigo et al. 2014b) detectó una reducción promedio del 58% en la infestación por *Fusarium* y del 53% en la contaminación por fumonisinas (micotoxinas) durante experimentos de campo de tres años con *T. harzianum* cepa T-22 en maíz. Con base en los efectos observados, muchos autores consideran el tratamiento de semillas con cepas de *Trichoderma harzianum* como un método eficaz de biocontrol de varios patógenos transmitidos por semillas y reducción de contaminantes de micotoxinas en la cadena alimentaria (Abo-Elnaga 2012; Ferrigo et al. 2014b).

Origen de la especie Trichoderma harzianum

Trichoderma (Figura 1) es un componente omnipresente y, usualmente, predominante de la microflora en numerosos suelos (nativos y agrícolas) en todas las zonas climáticas (Carreras-Villaseñor et al. 2012). Entre los aislamientos de suelo más comunes de *Trichoderma* se encuentran las especies *T. atrobrunneum, T. guizhouense, T. simmonsii y T. harzianum* (Chaverri et al. 2015). Algunas de estas especies poseen una fuerte competencia en la rizosfera, es decir, son altamente interactivas en el entorno de las raíces y pueden proliferar con éxito y establecerse a lo largo del sistema de raíces en desarrollo. En este sentido, se ha dado especial interés científico y comercial a *Trichoderma harzianum* T-22, una cepa eficaz caracterizada por su notable competencia rizosférica y su capacidad para colonizar raíces de plantas en diferentes tipos de suelo (Lo et al. 1998; Harman 2000).

Figura 1 Antagonismo in vitro de *Trichoderma harzianum* contra *M. fijiensis*. Izquierda: Cultivo dual. *T. harzianum* sobrecrece la colonia de *M. fijiensis* y desarrolla estructuras de reproducción. Derecha: Observación microscópica del efecto de *T. harzianum* sobre hifas de *M. fijiensis* en microcultivo. Figura tomada de (Acosta-Suárez et al. 2013).

Cada vez más publicaciones demuestran que Trichoderma también es un endófito vegetal importante que puede interactuar con plantas como el trigo, el maíz, el pepino, el algodón, el tomate y Arabidopsis thaliana (Yan et al. 2015; Ripa et al. 2019; Ramírez-Valdespino et al. 2019). Muchos aislamientos comunes de suelo de Trichoderma, incluido T. harzianum, se encontraron dentro de las raíces de diversas plantas. Por ejemplo, T. harzianum T6776 es capaz de colonizar raíces de albahaca, zanahoria, pimiento, rábano, tabaco y tomate (Fiorini, 2016, University of Pisa, Electronic thesis and dissertation repository https://etd.adm.unipi.it/theses/available/etd-05272016-151637 /unrestricted/FIORINI LISA PhD THESIS..pdf; Ph.D. Thesis, chapter 1 (2016): 2-12). Se ha demostrado que las especies de Trichoderma que se encuentran naturalmente en el suelo pueden penetrar la primera o segunda capa de la epidermis en el tejido radicular de las plantas y colonizar espacios entre la membrana plasmática y la pared celular vegetal (Hermosa et al. 2012; Ramírez-Valdespino et al. 2019). Cabe señalar que el término "crecimiento endófito" se utiliza a menudo en lugar de colonización. Mientras que el crecimiento endofítico exige crecimiento intracelular, la capacidad de colonización descrita para muchas cepas de Trichoderma describe más bien el crecimiento en tejidos vegetales entre células. Sin embargo, normalmente no atraviesan la barrera endodérmica ni invaden los vasos del xilema, alcanzando las partes superiores de los brotes y órganos reproductores, como flores, frutos y semillas, aunque se pueden encontrar excepciones. Si bien el aislado de T. harzianum T-22 aplicado como tratamiento de semillas pudo colonizar extensamente el sistema de raíces del maíz, incluidas las especificaciones intercelulares de la corteza de la raíz, no se encontró dentro de los granos, lo que confirma que la raíz/rizosfera es su principal nicho ecológico (Ferrigo et al. 2014b).

Se ha demostrado que la respuesta mediada por ácido salicílico está implicada en la restricción de la colonización de la planta por *Trichoderma*, evitando así la invasión del sistema vascular y la diseminación a los órganos de la superficie (Fiorini, 2016, University of Pisa, Electronic thesis and dissertation repository https://etd.adm.unipi.it/theses/available/etd-05272016-151637/unrestricted /FIORINI_LISA_PhD_THESIS..pdf; Ph.D. Thesis, chapter 1 (2016): 2-12; Ramírez-Valdespino et al. 2019). Solo un número limitado de especies de *Trichoderma*, es decir, *T. amazonicum, T. endophyticum, T. neotropicale* y *T. riffai* pueden colonizar el apoplasto y vivir como endófitos "verdaderos" (Mukherjee et al. 2012; Chaverri et al. 2015). Sin embargo, estas especies son diferentes de las cepas de suelo aisladas de forma rutinaria y forman un subconjunto filogenético distinto de origen evolutivo reciente (Chaverri et al. 2015).

Otros nichos ecológicos de Trichoderma harzianum

Se ha informado que las especies del complejo *Trichoderma harzianum* se encuentran en ecosistemas de bosques, agricultura, pastizales o humedales y en diversos nichos ecológicos, como madera en descomposición o compost de hongos (Błaszczyk et al. 2011; Jang et al. 2018; Dou et al. 2019). En los estudios de Błaszczyk (Błaszczyk et al. 2011) y Dou (Dou et al. 2019), la especie *T. harzianum* representó el porcentaje más alto del número total de aislamientos identificados. Además, también se han identificado cepas de *T. harzianum* en muestras de colonias de hormigas cortadoras y no cortadoras de hojas y fueron las más frecuentemente aisladas del *complejo T. harzianum*, aunque esta especie también se encontró en muestras de suelo, recolectados a 10 metros de distancia de las colonias de hormigas (Montoya et al. 2016).

Algunas especies de *Trichoderma* se encuentran entre los hongos en los ambientes interiores de edificios húmedos y dañados por el agua y se ha sugerido su posible asociación con síntomas de mala salud relacionados con los edificios (Inamdar and Bennett 2015; Zhao et al. 2017; Castagnoli et

al. 2018). Sin embargo, aún no se ha establecido una relación causal, por lo tanto, su grado real de contribución aún se desconoce. Las especies de *Trichoderma* detectadas en tales entornos incluyen la especie clínicamente relevante *T. longibrachiatum* que, junto con la especie estrechamente relacionada *T. citrinoviride*, representan la mayoría de los aislados de *Trichoderma* de materiales de construcción. Varios estudios mencionan la presencia de especies de *T. harzianum* entre los aislamientos, sin embargo, a menudo no se identificaron a nivel de especie (Inamdar and Bennett 2015). No se encontraron informes sobre el aislamiento de *T. harzianum* de los ambientes interiores, aunque se informó que una cepa de *T. afroharizanum* estaba aislada de una esponja marina (Sandoval-Denis et al. 2014).

Descripción de los organismos objetivo

T. harzianum se utiliza como biocontrolador de hongos patógenos que son transmitidos por semillas. Estos patógenos, que pueden estar presentes dentro y fuera de las semillas o asociados a ellas como contaminantes, pueden causar aborto, pudrición, necrosis, reducción o eliminación de la capacidad de germinación de las semillas, así como daño a las plántulas que puede generar enfermedades en etapas posteriores de la planta por infección sistémica o local. Se ha informado que un complejo de hongos transmitidos por semillas pertenecientes a los géneros *Bipolaris, Lasiodiplodia, Gibberella, Metarhizium, Fusarium, Drechslera, Tilletia y Ustilago* son los hongos transmitidos por semillas más frecuentes de varios cereales, incluido el trigo (Hasan et al. 2012; Ferrigo et al. 2014b; Kim and Vujanovic 2016).

Modo de acción

Los mecanismos de control biológico empleados por la especie *T. harzianum* se pueden dividir en dos grandes grupos: *(i) con efecto directo sobre patógenos vegetales a través de micoparasitismo y/o antibiosis, que implica la secreción de enzimas y sustancias antifúngicas, y (ii) con efecto indirecto sobre los patógenos de las plantas a través de la competencia por nichos y nutrientes y / o la inducción de defensas de las plantas* (Benítez et al. 2004; Hermosa et al. 2012; Contreras-Cornejo et al. 2016; Guzmán-Guzmán et al. 2019). Esto implica que el efecto de biocontrol que ejerce *T. harzianum* es una combinación de diferentes mecanismos que actúan sinérgicamente para lograr el control de la enfermedad (Zhang et al. 2016).

(i) Efecto directo: micoparasitismo y antibiosis mediados por la secreción de enzimas que degradan la pared celular y sustancias antifúngicas.

La primera interacción detectable entre *Trichoderma* y su patógeno antagonista es el crecimiento quimiotrópico de las hifas del micoparásito hacia su objetivo, que probablemente sea una respuesta a señales que se difunden, como las oligoquitinas. Una vez que el micoparásito llega al huésped, sus hifas a menudo se enrollan alrededor de él o se adhieren formando estructuras en forma de gancho (Figura 2). La unión de *Trichoderma* a la superficie de la célula huésped está mediada por interacciones lectina-carbohidrato (Inbar and Chet 1995; Inbar and Chet 1997). Este paso proporciona la base para la especificidad de la interacción y desencadena una cascada de eventos que eventualmente conducen a la penetración y destrucción del huésped.

Figura 2 Representación esquemática del micoparasitismo producido por *Trichoderma* tomada de (Guzmán-Guzmán et al. 2019).

A, Diagrama que representa los pasos iniciales (antes del contacto) de la interacción entre colonias de *Trichoderma* y presas fúngicas. B, Diagrama que describe los factores y estructuras utilizados por *Trichoderma* y sus presas durante su interacción antagónica. ROS, especies reactivas de oxígeno; (CWDE del inglés *cell wall degrading enzymes*), enzimas que degradan la pared celular; SM, metabolitos secundarios.

Hace varias décadas, se propuso que la penetración del micelio del huésped se produce por degradación parcial de su pared celular (Elad et al. 1983). Posteriormente se comprobó que, efectivamente, *Trichoderma* secreta un conjunto complejo de CWDE entre las que las quitinasas, β -glucanasas y proteasas juegan un papel importante en la actividad micoparasitaria de *T. harzianum* contra hongos patógenos (Tabla 2) (Viterbo et al. 2002; Grinyer et al. 2004; Suarez et al. 2004; Montero et al. 2005; Pratibha Sharma 2011; Yao et al. 2013; Steindorff et al. 2014). Estas CWDE actúan sinérgicamente entre sí y con otros metabolitos secundarios (péptidos no ribosomales y policétidos), que facilitan la entrada de la hifa de *Trichoderma* en el lumen del hongo parasitado y la asimilación del contenido de la pared celular (Benítez et al. 2004). Se ha comprobado que las β -1,3-glucanasas están involucradas en interacciones fúngicas patógeno-planta, degradando calosa (betaglucano) en los tejidos vasculares del huésped durante el ataque de patógenos (Schaeffer et al. 1994). Los glucanos son los principales componentes estructurales de las paredes celulares de los hongos. Kuhn y colaboradores (Kuhn et al. 1990) sugieren que las quitinasas, las β -1,3-glucanasas y β -1,3-glucanosiltransferasas producidas por algunas *Trichoderma* spp. son las enzimas clave en la lisis de las células de la pared del huésped durante su acción micoparasitaria.

Tabla 2 Compuestos y enzimas sintetizados por Trichoderma (Sood et al. 2020).

No.	Categoría	Función realizada	Especies de Trichoderma
1.		Fitohormonas	

	IAA	Crecimiento y Desarrollo del sistema radicular de las plantas.	T. virens
	GA3	Promoción del crecimiento por degradación de las proteínas DELLA que reprimen el crecimiento y reducción del nivel de etileno.	Trichoderma spp.
	ABA	Alteración en la transpiración y regulación de la apertura estomática a través de la inducción de un receptor ABA.	T. virens y T. atroviride
	Etileno	Tolerancia mejorada al estrés biótico y abiótico mediante la regulación de los niveles de SA y JA, así como sus vías de señalización.	T. atroviride
	JA	JA y/o ET son las moléculas de señalización para la ISR inducida por Tichoderma.	T. asperellum
	SA	Mejora la resistencia a enfermedades en las plantas a través de la inducción de SAR.	T. atroviride
2.		Enzimas	
2.	Hidrolíticas	Enzimas	
2.	Hidrolíticas Enzimas celulolíticas	Enzimas Escinde de enlaces beta-1,4-D-glucosídicos en moléculas de celulosa.	
2.	Hidrolíticas Enzimas celulolíticas Exo-beta-1,4-glucanasas	Enzimas Escinde de enlaces beta-1,4-D-glucosídicos en moléculas de celulosa. Descompone la celulosa formando una molécula de celobiosa ya sea de la terminal reductora o no reductoras.	T. viride, T. harzianum, T. reesei, T. koningii

Beta-glucosidasas	Promueve la lisis de oligosacáridos largos y celobiosa en glucosa	T. viride, T. harzianum, T. reesei y T. longibrachiatum
Xilanasa	Cataliza la descomposición de xilanos para formar xilo-oligómeros, xilobiosa y xilosa.	
Quitinasa	Cataliza la degradación de quitina para formar quitooligómeros de bajo peso molecular	
Endoquitinasa	Hidroliza aleatoriamente la quitina en sitios internos y forma dímero de diacetilquitobiosa y multímeros de bajo peso molecular de GlcNAc como quitotriosa y quitotetraosa.	T. hazianum, T. koningii, T. lignorum,T. longibrachiatum, T. pseudokoningii, T. reesei,T. viride T. virens, T. asperellum, T. atroviride
Exoquitinasa	Dividida en 2 subcategorías: 1. quitobiosidasas, implicadas en catalizar la liberación secuencial de diacetilquitobiosa a partir del extremo no reductor de microfibrillas de quitina 2. 1-4- beta-glucosaminidasas, implicadas en la división de productos oligoméricos de endoquitinasas y quitobiosidasas, produciendo así monómeros GlcNAc.	
	Proteasas	
Exopeptidasa	Escinde uniones peptídicas, ya sea en el amino o en el carboxi terminal	T. viride, T. harzianum, T. aureoviride, T. atroviride
Endopeptidasa	Divide las uniones peptídicas	
Lipasa	Hidroliza los enlaces éster de los triacilgliceroles, lo que da como resultado la formación de mono y diacilgliceroles, ácidos grasos libres y, en algunos casos, también glicerol.	T. viride, T. harzianum, T. aureoviride, T. atroviride
Glucosa oxidasa	Genera especies de oxígeno reactivas (ROS).	T. virens, T. asperelloides

	Enzimas Antioxidativas (ej., SOD, CAT, POD etc.)	Promueve el mecanismo de defensa oxidativa en las plantas	Trichoderma spp.
		Biosintéticas y señalización	
	PAL & CHS	Producción de fitoalexinas	Trichoderma spp.
	Glucan y quitin sintasas	Son producidas por <i>Trichoderma</i> para reparar el daño del patógeno sobre la pared celular propia durante la interacción <i>Trichoderma</i> - patógeno.	Trichoderma spp.
	МАРК	Transmite información desde el receptor para generar señalización celular y respuestas de defensa.	Trichoderma spp.
	ETR1 y CTR1	Involucrada en la señalización del etileno.	Trichoderma spp.
	LOX1 (Lipoxigenasa 1) PAL1 (fenilalanina amonio liase),	Participa en el proceso de biosíntesis del ácido jasmónico y ácido salicílico.	Trichoderma spp.
	ACC sintasa ACC oxidasa	Promueve la biosíntesis de etileno.	Trichoderma spp.
	Delta-cadinenosintasa	Actúa como precursor en el proceso de síntesis de fitoalexina	T. virens
3.		Modificadores del suelo	
	Ácidos glucónico, cítrico y fumárico	Reduce el pH del suelo y facilita la solubilización de fosfatos y micronutrientes.	Trichoderma spp.
	Sideroforo	Quelata el Fe (III) insoluble y lo convierte a Fe (II) soluble.	Trichoderma spp.
4.		Metabolitos secundarios	
	Pironas	Antimicrobiano	Trichoderma spp.

Lactonas	Participa en la señalización mediada por etileno y mejora el crecimiento de la planta y la arquitectura de la raíz.	T. harzianum, Trichoderma cremeum
Koninginins	Antimicrobiano	T. koningii, T. harzianum, T. aureoviride
Trichodermamidas	Antifúngico y exhibe citotoxicidad en el carcinoma de colon humano.	T. virens
Viridinas	Antifúngico	Trichoderma virens, T. koningii, T. viride
Compuestos heterocíclicos de nitrógeno (harzianopiridona, ácido harziánico)	Antifúngico	T. harzianum
Azaphilones	Antifúngico	T. harzianum T22
Butenolidas e hidroxi- Lactonas	Antifúngico	T. cerinum, Trichoderma cremeum, Trichoderma longibrachiatum
Metabolitos de Isocyano (dermadina y trichoviridina)	Antifúngico	T. viride T. koningii y T. hamatum
Diquetopiperazinas (gliotoxina y gliovirina)	Antifúngico	Trichoderma (Gliocladium) virens
Peptaibol (alamethicina, trichokonina VI)	Péptidos cortos no ribosómicos, ricos en Ácido 2-amino-isobutírico implicado en la defensa de las plantas y de naturaleza antimicrobiana.	T. virens, T. Iongibrachiatum

Polyketidos	Participa en la vía de señalización mediada por SA y exhibe actividades antimicrobianas.	T. virens, Trichoderma sp.
Terpenos Ciclonerane sesquiterpenoides. Trichocitina, trichosordarina A	Antimicrobiano	T. virens, Trichoderma harzianum P1-4, Trichoderma citrinoviride cf-27, Trichoderma harzianum R5
Compuestos orgánicos de carbono (VOCs) (trichodieno)	Facilita la interacción planta-microbio en la rizosfera	T. arundinaceum, T. atroviride
Hidrofobinas	Promotor de crecimiento de plantas, defensa y señalización	T. virens y T. atroviride, T. asperellum

Se ha caracterizado bioquímicamente (Geremia et al. 1993) una proteasa extraída de *Trichoderma harzianum* que indicó que el gen que codifica para ésta se expresa específicamente durante el proceso micoparasitario. Estos datos apoyan la hipótesis de que la secreción de enzimas hidrolíticas por *Trichoderma* es activado por una señal presente en la pared celular del patógeno.

Dentro de las posibles funciones de las quitinasas fúngicas (Adams 2004; Cohen-Kupiec and Chet 1998; Duo-Chuan 2006; Gooday 1990; Herrera-Estrella and Chet 1999; Yang et al. 2007) se incluyen: (i) degradación de quitina exógena presente en las paredes celulares fúngicas de fragmentos de hifas o en los exoesqueletos de artrópodos muertos, y el uso de los productos de degradación como fuente de nutrientes; (ii) remodelación de la pared celular durante el ciclo de vida del hongo, que incluye roles putativos de quitinasas durante el crecimiento de hifas, ramificación, fusión de hifas y autolisis; y (iii) competencia y defensa contra otros hongos o artrópodos en el hongo hábitat. Algunos hongos incluso han desarrollado estilos de vida que implican el uso de quitinasas para atacar activamente a otros hongos (micoparasitismo), insectos (hongos entomopatógenos) o nematodes (hongos atrapanematodos).

En (Ramada et al. 2016) se incluye un estudio exhaustivo del secretoma de la cepa ALL42 de *Trichoderma harzianum* en el que sus esporas se inoculan e incuban con medios de cultivo complementados con paredes celulares de *Fusarium solani*. Los genes relacionados con el micoparasitismo que codifican CWDE y las sustancias antifúngicas responden transcripcionalmente a la presencia de un antagonista fúngico y esta respuesta es específica del patógeno y puede variar con el tiempo (Matarese et al. 2012; Ramada et al. 2016; Sharma et al. 2016; Sharma et al. 2017).

La producción de enzimas y antibióticos determina la capacidad antagonista y de biocontrol de las cepas de *Trichoderma* (Viterbo et al. 2001, 2002; El-Hasan et al. 2009). Dado que tanto el micoparasitismo como la antibiosis dependen de la producción de enzimas líticas y sustancias

antifúngicas, estos mecanismos a menudo ocurren juntos. Por ejemplo, (Lo et al. 1998) estudió las habilidades de colonización y el modo de acción de *T. harzianum* T-22 contra *Rhizoctonia solani* en la superficie de las semillas de bentgrass rastrero (Agrostis). Los resultados de este estudio mostraron que el efecto de biocontrol del T-22 se logra mediante micoparasitismo y antibiosis. Sin embargo, la antibiosis se observó con más frecuencia ya que se registró 3 días después de la aplicación de la semilla (2 días antes que el micoparasitismo).

Las especies de *Trichoderma* producen una amplia gama de SM con actividad inhibidora contra varios microorganismos. La producción de SM en *Trichoderma* depende de la especie e incluso de la cepa e incluye sustancias antimicrobianas volátiles y no volátiles que pertenecen a una variedad de clases de compuestos químicos. Estos consisten en péptidos no ribosomales, como peptaibols y sideróforos, así como compuestos no polares de bajo peso molecular, como pironas, butenólidos, azafilonas, antraquinonas, tricotecenos, terpenoides y esteroides. En varios estudios (Mukherjee et al. 2012, Contreras-Cornejo et al. 2016, Li et al. 2019 y Ramírez-Valdespino et al. 2019), se puede encontrar una descripción completa de las principales clases de SM producidas por *Trichoderma*, así como su función biológica en las interacciones *Trichoderma*-planta-patógeno. El estudio experimental más relevante en cuanto a detección e identificación de SM en varios biocontroladores *Trichoderma* spp. y sus formulaciones comerciales fueron realizadas por (Degenkolb et al. 2015) y se analiza a continuación.

(a) Péptidos no ribosomales - peptaibols

Los peptaibióticos o peptaibols son péptidos pequeños (aproximadamente de 5 a 20 aminoácidos de longitud) que son sintetizados por péptido-sintasas no ribosomales y tienen un alto contenido de aminoácidos no convencionales (Daniel and Filho 2007). Actualmente, hay más de 300 compuestos de este tipo caracterizados y este número aumenta constantemente (<u>http://peptaibol.cryst.bbk.ac.uk/home.shtml</u>).

Se ha informado que la producción de peptaibols en *Trichoderma* spp. está altamente influenciada por la interacción con patógenos vegetales, ya que el nivel de expresión de la peptaibol sintetasa *tex1* por qRT-PCR mostró un aumento significativo en la interacción de *T.asperellum* con *R. solani* en comparación con el control (Tamandegani et al. 2020). La naturaleza anfipática de los peptaibols les permite auto-asociarse en conjuntos de canales iónicos oligoméricos que abarcan el ancho de las membranas de bicapa lipídica, lo que da como resultado la fuga celular y la muerte de los organismos objetivo. Lorito y su gupo de estudio (Lorito et al. 1996) demostraron que los peptaibols de *T. harzianum* (tricorzianinas TA y TB) que actúan sinérgicamente con las β-glucanasas, inhiben la actividad de la β-glucanosintasa en el hongo huésped y, por lo tanto, impiden la reconstrucción de las paredes celulares del patógeno. Esta observación condujo a un modelo ampliamente aceptado que describe la acción sinérgica de peptaibols e hidrolasas durante el proceso de interacción antagonista de *Trichoderma* spp. con patógenos fúngicos.

También se sabe que *T. harzianum* y sus especies filogenéticamente relacionadas producen peptaibols que consisten en péptidos de residuos de 18, 11 y/o 14 aminoácidos (Röhrich et al. 2014; Neuhof et al. 2007; Degenkolb et al. 2015). Por ejemplo, Degenkolb (Degenkolb et al. 2015) y coautores (2015) detectaron peptaibols de las tres subclases tanto en cultivos en placa como en formulaciones de productos comerciales de cepas de control biológico de *T. harzianum*, *T. simmonsii y T. guizhouense*. Se mostró un perfil de peptaibol comparable que consta de 11, 14 y 18 péptidos para otra cepa comercial: *T. harzianum* T-22 (Van Bohemen et al. 2016). Se ha informado la detección

de peptaibols de 18 y 11 residuos para aislamientos de *T. harzianum* que se originan en el suelo ((lida et al. 1994, 1995; Goulard et al.) y en interiores (Peltola et al. 2004; McMullin et al. 2017). Las tricorzinas HA de 18 residuos aisladas de la cepa de suelo de *T. harzianum* HK-61 mostraron una actividad inhibidora superior al 42,5% a una concentración de 10 µM contra la infección por el virus del mosaico del pepino en la planta de caupí *Vigna sesquipedalis* en un bioensayo de lesión local (Kai et al. 2018).

Dado que el entorno vegetal se caracteriza generalmente por una baja disponibilidad de nutrientes, el establecimiento y la proliferación de *Trichoderma* en el ámbito del control biológico en estos entornos es limitado. Por lo tanto, se espera que el nivel de producción de peptaibols sea limitado y se induzca solo de manera transitoria tras el contacto directo con un patógeno antagonista (Jensen et al. 2013).

(b) Péptidos no ribosomales: sideróforos

Otro grupo de péptidos no ribosomales producidos por *T. harzianum* incluye sideróforos que, se supone, que son los metabolitos clave en la compleción con otros microorganismos en la rizosfera. Se ha informado que *Trichoderm*a spp. produce un promedio de 12 a 14 sideróforos diferentes, incluidos coprógeno, ácido dimerum, fusarinina, fusigen y ferricrocina, compartidos entre varios aislados (Lehner et al. 2013). Una cepa de suelo de *T. harzianum* CBS 226.95 se caracteriza por el mayor número de sideróforos producidos, probablemente "como la especie ambiental oportunista y fuertemente fungicida más común" (Lehner et al. 2013). Se ha detectado ferricrocina que juega un papel importante en el almacenamiento de hierro intracelular en cuatro cepas de control biológico (Degenkolb et al. 2008). En otro estudio (Vinale et al. 2017), se ha demostrado que durante el co-cultivo del agente de control biológico *Trichoderma harzianum* M10 y el endófito *Talaromyces pinophilus* F36CF se indujo la acumulación de ferricrocina en ambos hongos.

(c) Producción de metabolitos secundarios de bajo peso molecular

Además de peptaibols y sideróforos, se han detectado varios metabolitos secundarios no peptaibióticos en cultivos en placa de las cepas de biocontrol analizadas (Degenkolb et al. 2015). Los principales metabolitos secundarios de bajo peso molecular que se encuentran en *T. harzianum* pueden asignarse a policétidos, compuestos orgánicos heterocíclicos y compuestos orgánicos volátiles.

(d) Presencia de micotoxinas

Se ha detectado la presencia de micotoxinas conocidas del género *Trichoderma*, es decir, tricotecenos (trichodermin y harzianum A/B) y gliotoxina, así como algunas otras toxinas que aún no se han descrito del género *Trichoderma*, por ejemplo, aflatoxina (Degenkolb et al. 2015). La biosíntesis de tricotecenos por *Trichoderma* ha sido documentada para especies del linaje *brevicompactum*, mientras que la gliotoxina y el compuesto gliovirina estrechamente relacionado se encontraron originalmente solo en *T. reesei y T. virens* (Scharf et al. 2016). Recientemente, se detectó una policétido sintetasa no ribosomal posiblemente involucrada en la producción de gliotoxina en el genoma de varias especies del linaje *harzianum* (Kubicek et al. 2019).

(ii) Efecto indirecto: competencia por nichos y nutrientes e inducción de resistencia en plantas

Además de los efectos directos sobre los hongos fitopatógenos, las especies de *Trichoderma* colonizan gran parte del sistema radicular de las plantas y así protegen posibles sitios de infección y evitan la penetración de microbios patógenos. Además, las especies de *Trichoderma* son muy eficientes para competir con los hongos patógenos por varios nutrientes limitantes, lo que resulta en un fuerte efecto de control biológico. Por ejemplo, en los hongos filamentosos, la absorción de hierro es esencial para la viabilidad. En caso de estrés por hierro, la mayoría de los hongos excretan quelantes específicos de hierro férrico de bajo peso molecular, denominados sideróforos, para movilizar el hierro ambiental. Algunos aislados de *Trichoderma*, incluidos los de *T. harzianum* y especies relacionadas, producen sideróforos altamente eficientes que quelatan el hierro (Benítez et al. 2004). Un ejemplo en el alcance del biocontrol en este contexto es la cepa T34 de *T. asperellum* que supera a *Fusarium* f. sp. *lycopersici* en su acceso al hierro (Lehner et al. 2013).

Mientras está en el sistema radicular, Trichoderma puede proteger aún más a las plantas de los ataques patógenos al inducir resistencia sistémica en las plantas antes de que ocurra una posible infección por patógenos (Benítez et al. 2004; Ferrigo et al. 2014a; Guzmán-Guzmán et al. 2019). Las plantas poseen varios mecanismos de defensa para protegerse contra patógenos. Los patógenos activan la SAR, que está regulada por el ácido silícico y puede inducir localmente en el sitio de la infección del patógeno o en tejidos no inoculados. De manera similar, la colonización de las raíces de las plantas por microorganismos beneficiosos puede inducir una resistencia sistémica que está regulada por el ácido jasmónico y el etileno y ayuda a las plantas a responder de manera más eficiente al ataque patógeno, a través de una regulación positiva más fuerte de las defensas. Investigaciones recientes han demostrado que T. harzianum indujo resistencia sistémica a través de SAR e ISR. La participación de estas vías depende de varios factores, incluida la especie vegetal, las cepas de Trichoderma aplicadas y el tipo de tratamiento (Hermosa et al. 2012). Además de SAR e ISR, Trichoderma harzianum activa un sistema de desintoxicación de ROS y la producción de compuestos antimicrobianos a través de la vía fenilpropanoide, que limitan la infección por patógenos, pero también pueden mejorar la tolerancia general de la planta al estrés abiótico (Zhang et al. 2016; Coppola et al. 2019; De Palma et al. 2019).

Como consecuencia de la colonización de la raíz por *Trichoderma*, se establece una compensación entre las vías biosintéticas de las plantas que involucran las funciones de defensa y de crecimiento, como la actividad desaminasa del ACCD, que modula la biosíntesis de etileno, o IAA, que estimula el crecimiento de las plantas (Hermosa et al. 2012) (Figura 3). Se ha informado que la cepa T22 de *T. harzianum* mejora el rendimiento del cultivo de tomate al tiempo que aumenta el contenido de metabolitos que tienen un efecto positivo en la calidad y el valor nutricional del producto (Carillo et al. 2020). Además, las cepas de *T. harzianum* son capaces de mejorar el crecimiento de raíces y brotes del trigo (Kucuk 2014) incluso en condiciones de estrés abiótico como el estrés salino, como se ha demostrado en cultivares de trigo con una cepa de *T. harzianum* estrechamente relacionada (Oljira et al. 2020).

También se ha informado que el método elegido para inocular cepas de *Trichoderma* a las semillas tiene un impacto significativo en el éxito del control biológico y la promoción de las plantas, algo que se demostró al comparar la inoculación directa de la raíz con la inoculación a nivel de sustrato de una solución que contiene *T. harzianum y T. koningii* para el control de *Fusarium oxysporum* en plántulas

de Hypericum perforatum utilizando como sustratos lana de roca y tierra. La inoculación directa de la raíz arrojó mejores resultados (Giurgiu et al. 2017).

Figura 3 Representación esquemática de la señalización molecular de la planta-*Trichoderma* y los efectos inducidos por la planta tomada de (Hermosa et al. 2012).

T, *Trichoderma;* P, patógeno; IAA, ácido indol-3-acético; ACCD, ACC desaminasa; ET, etileno, JA, ácido jasmónico; SA, ácido salicílico; ISR, resistencia sistémica inducida.

Etapas de desarrollo y ciclo de vida del microorganismo

El género *Trichoderma* contiene cientos de especies, algunas de las cuales solo se presentan como teleomorfos (forma sexual denominada *Hypocrea*), mientras que otras, hasta ahora, solo se han observado como anamorfos propagados asexualmente. Existen tres estrategias de reproducción asexual de *Trichoderma* spp.: conidiación, conidiación de microciclos y clamidosporogénesis. La gran mayoría de las cepas de *Trichoderma* de control biológico, incluida *T. harzianum*, demuestran reproducción por conidiación. La conidiación es inducida por lesiones ligeras y mecánicas, aunque los efectos de estos inductores están influenciados por las condiciones ambientales, como el estado de los nutrientes y el pH (Carreras-Villaseñor et al. 2012). La germinación de las conidiosporas se produce en condiciones adecuadas de temperatura, pH y humedad. El tubo germinativo se convierte en un micelio, que consta de hifas ramificadas irregularmente. Las células conidiógenas llamadas fialidos, se convertirán posteriormente en conidióforos, y seguirá la producción y maduración de nuevas conidiasporas (Figura 4).

Figura 4 Conidiogenesis en Trichoderma siguiendo la percepción de diferentes estímulos

(a) Aparición de hifas verticales, (b) ramificación de hifas, (c) desarrollo de fialidos, (d) aparición de conidias hialinas, (e) maduración de la pigmentación conidial. Figura tomada de (Steyaert et al. 2010).

Capacidad de infectividad, dispersión y colonización

(i) Colonización de raíces de plantas por Trichoderma, supervivencia y dispersión

Colonización. El proceso de colonización de plantas por *Trichoderma* se inicia mediante exudados derivados de raíces, entre los que se encuentran ácidos orgánicos y carbohidratos. Además, las plantas pueden liberar metabolitos especiales que mejoran la atracción de sustancias activas microbianas como parte de una respuesta para contrarrestar el estrés biótico y abiótico. Por ejemplo, se demostró que las peroxidasas y oxilipinas que son liberadas por las raíces del tomate en respuesta al ataque de patógenos, estimulan el crecimiento y actúan como quimioatrayentes de *T. harzianum* T-22 (Lombardi et al. 2018).

Algunas cepas de *Trichoderma* colonizan solo sitios locales en las raíces, mientras que las cepas competentes en la rizosfera, como *T. harzianum*, colonizan grandes superficies radiculares. Durante este proceso, las hifas de *Trichoderma* se enrollan alrededor de las raíces, forman estructuras parecidas a apresorios y penetran en la corteza de la raíz donde crecen entre sus células (Mukherjee et al. 2012; Ramírez-Valdespino et al. 2019). Recientemente, se propuso un modelo putativo de los eventos tempranos durante la colonización de plantas por *Trichoderma* basado en un análisis detallado del transcriptoma de las raíces de tomate inoculadas con *T. harzianum* T-22 (De Palma et al. 2019) (Figura 5). El reconocimiento planta-*Trichoderma* parece ocurrir principalmente a través de un sistema especial de receptores de membrana microbiana-vegetal que se basa en la percepción de MAMP por los PRR de las plantas. Se han identificado varios MAMP para *Trichoderma*, incluidas las hidrofobinas, ciclofilinas y enzimas que degradan la pared celular, como la endopoligalacturonasa (ThPG1) de *T. harzianum* (Hermosa et al. 2012; Ramírez-Valdespino et al. 2012; Ramírez-Valdespino et al. 2019).

Además, se ha observado que la colonización de raíces por *Trichoderma* puede ser una adaptación co-evolutiva a ciertos genotipos en lugar de estar relacionada con la presión de la plaga después de tratar las raíces de ocho genotipos de lenteja, tanto en presencia como en ausencia del patógeno de pudrición de la raíz *Aphanomyces euteiches*, con productos basados en *T. harzianum* T-22 y *T. virens*

G41 (Bazghaleh et al. 2020). Si bien redujeron efectivamente el crecimiento de *A. euteiches* en ensayos in vitro en placas, este efecto antagonista no se observó en experimentos con plantas en los que los tratamientos generalmente fortalecieron la salud y la nutrición de la planta.

Figura 5 Modelo propuesto de los primeros eventos durante la colonización de raíces de plantas por *Trichoderma*. El reconocimiento de los inductores de MAMPs/DAMPs de *T. harzianum* por parte de los receptores de reconocimiento de patrones de las raíces de tomate desencadena una respuesta a lo largo del período de interacción observado (de 24 a 72 hpi). La diafonía de fitohormonas orquesta la colonización de raíces por *Trichoderma*: (1) la inducción de la biosíntesis y señalización de ácido silícico, así como la acumulación de ROS activan las defensas de la planta, lo que limita la propagación de hongos y (2) la inhibición inducida por ácido silícico de la biosíntesis y señalización de ácido jasmónico y etileno permite controlar la raíz colonización. En tiempos posteriores, el aumento de la señalización de etileno y auxinas inducen modificaciones en la arquitectura de la raíz que, junto con cambios. Figura tomada de (De Palma et al. 2019)

Supervivencia y dispersión. Aunque los microorganismos se comportan de manera diferente entre sí, los hongos como *T. harzianum* tienden a disminuir con el tiempo en el suelo de la rizosfera y en las raíces. Por ejemplo, la abundancia relativa de *T. harzianum* en los campos de frutillas fue mayor después del primer año de cultivo en el campo, pero disminuyó dentro de los 5 a 10 años (Huang et al. 2018). Además, en Ferrigo *et al.* (2014b) se mostró que *T. harzianum* T-22, recubierto de semillas de maíz, creció en contacto con las raíces, al menos hasta la etapa de floración; sin embargo, su presencia disminuyó durante las etapas de desarrollo a pesar de las altas tasas de colonización observadas en la emergencia. Los autores concluyeron que "independientemente del nivel de colonización de la raíz de *Trichoderma*, la acción de biocontrol observada en el campo no podría estar necesariamente relacionada con una alta colonización de BCA; más bien, estaría determinada por la superación de un nivel umbral".

De manera similar a este estudio, se observó una rápida disminución en el tamaño de la población de *T. harzianum* CECT 2413 en la superficie de la raíz del olivo, marcado con fluorescencia, inoculado como conidios pregerminados (Ruano-Rosa et al. 2016). Los autores también detectaron la

prevalencia de estructuras en reposo sobre hifas una semana después de la inoculación. Tres semanas después de la inoculación, las clamidosporas fueron la estructura fúngica más abundante, cubriendo grandes áreas de la epidermis de la raíz del olivo. No se observaron hifas después de este punto de tiempo, lo que podría explicarse por la baja disponibilidad de nutrientes en la rizosfera. También se detectaron clamidosporas tres meses después de la inoculación, aunque su número fue muy bajo.

(ii) Efecto de los factores ambientales sobre la capacidad de crecimiento y colonización de Trichoderma

La capacidad de crecimiento y colonización de Trichoderma spp. están influenciados por una serie de parámetros físico-químicos, que incluyen la temperatura, la humedad y el pH del suelo (Eastburn and Butler 1988; Eastburn and Butler 1991; Longa et al. 2008). En general, T. harzianum puede colonizar plantas en un amplio rango de temperaturas y proteger las semillas en germinación de enfermedades transmitidas por las semillas y el suelo durante las frías condiciones de otoño y primavera. Esto fue ilustrado por los primeros estudios realizados por Eastburn y Butler en 1988 y 1991, utilizando un aislado de suelo de *T. harzianum* como organismo modelo. En el estudio posterior (1991) los autores compararon las temperaturas óptimas para el crecimiento in vitro y las capacidades de colonización in vivo de T. harzianum 1059 y encontraron que la temperatura óptima para el crecimiento radial en cultivo estaba entre 27 ° C y 30 ° C mientras que la temperatura óptima la temperatura de colonización fue considerablemente más baja (15 ° C a 21 ° C). También se informó que la colonización de plantas por T. harzianum puede ocurrir a baja temperatura, es decir, 9 ° C. En el mismo estudio, Eastburn y Butler confirmaron la observación anterior sobre el efecto de la humedad sobre la actividad de colonización de T. harzianum. Encontraron (1988, 1991) que tanto el crecimiento como la tasa de colonización aumentan con una mayor humedad del suelo y que las densidades de población más altas de esta cepa se observaron durante los meses de invierno (diciembre-marzo).

Las tasas de crecimiento y las actividades de colonización de *Trichoderma* también se ven afectadas por los cambios en el pH. *Trichoderma* tolera una amplia gama de niveles de pH, teniendo un crecimiento óptimo observado en medios ácidos (pH 4-6). El crecimiento micelial y la esporulación de varias cepas se reducen significativamente en medio alcalino (pH \ge 8) y a pH 3 e inferior (Longa et al. 2008; Huang et al. 2018).

Descripción global de la metodología utilizada

Para este trabajo bioinformático, utilizaremos las herramientas computacionales que se describen brevemente a continuación.

Partiendo de un análisis bibliográfico extenso para el cual no utilizamos ningún algoritmo de búsqueda inteligente, sino que lo hicimos en base a palabras clave, buscamos proteínas que puedan estar involucradas en la actividad biofungicida de *Trichoderma*. Debimos comenzar nuestro análisis buscando información experimental, dado que desde el punto de vista bioinformático es muy difícil pronosticar la actividad biológica de las proteínas y su rol biológico en base a su secuencia. A partir de las proteínas encontradas, realizamos búsquedas de similitud secuencial en proteomas de organismos en los que ocurran homólogos cercanos, para ver cuales tienen proteínas potencialmente involucradas en los mecanismos de biocontrol. Para la obtención de información adicional de las

proteínas encontradas utilizamos distintas fuentes de identificación, tales como UNIPROT, NCBI, JGI y PDB, mientras que para la búsqueda de similitud secuencial usamos BLAST dado que resulta una herramienta rápida, ya que no necesitamos métodos de alta sensibilidad para buscar homólogos remotos (en las páginas 5 - 7 se encuentra un breve detalle de las bases de datos, programas, servidores y nomenclaturas utilizadas en todo el texto). Con esta información, generamos una base de datos secuencial y estructural.

Habiendo seleccionado los "mejores organismos biocontroladores" según el análisis anterior, buscamos detectar en éstos la presencia de proteínas que hayan sufrido un proceso de neofuncionalización o readaptación funcional por métodos evolutivos, en particular, bajo presión selectiva positiva. Los biólogos evolutivos suelen invocar dos tipos de fuerzas selectivas que dan forma a la evolución de las especies. Una es la selección purificadora, que favorece la conservación de los fenotipos existentes. La otra es la selección positiva (también conocida como selección darwiniana), que promueve la aparición de nuevos fenotipos. Generalmente, las proteínas que evolucionan bajo patrones de selección positiva están vinculadas a adaptaciones funcionales recientes que podrían explicar la biología de *Trichoderma*. Usamos un método recursivo para seleccionar diferentes conjuntos de proteínas ortólogas de OMA para diferentes especies relacionadas con *Trichoderma harzianum*. Para cada conjunto, construimos alineaciones de ADN usando regiones de codificación y las alineaciones de proteínas correspondientes y esta información fue utilizada para inferir sus árboles evolutivos.

Estimamos la presencia de selección positiva a nivel secuencia y por posiciones. Utilizando los resultados de velocidades de evolución a nivel de proteínas y a nivel regiones codificantes, seleccionamos candidatos posibles de representar adaptaciones funcionales al rol biológico de *T. harzianum* como controlador biológico de patógenos. En el caso de velocidades de evolución a nivel de proteínas utilizamos las que se encuentren entre las proteínas más rápidas ya que en general podrían indicar adaptaciones funcionales. Por el lado de velocidades de evolución de regiones codificantes utilizamos las secuencias que presenten selección positiva tanto a nivel de cluster filogenéticos específicos y/o posiciones determinadas de cada proteína. Las proteínas con altas velocidades de evolución que carecían de información bibliográfica respaldatoria de su posible rol funcional se descartaron ya que el valor predictivo de la velocidad a nivel proteico es escaso.

Los candidatos seleccionados anteriormente fueron sometidos a distintos estudios computacionales que pongan de manifiesto su relación estructura-función y, de alguna forma, revelen la importancia de las posiciones detectadas bajo el régimen de selección positiva. Para cada uno de estos candidatos procedimos a estimar su estructura terciaria y/o cuaternaria utilizando el programa AlphaFold2, en los casos en los que se encuentren cristalizados. Mapeamos en estos modelos las posiciones detectadas por los métodos evolutivos con selección positiva prestando especial atención a su pertenencia a las estructuras de relevancia biológica como cavidades y túneles y también regiones desordenadas. Como resultados de estas caracterizaciones esperamos encontrar datos que avalen la relación estructura-función con las posiciones con selección positiva y/o conservación evolutiva.

Hipótesis

Los mecanismos por los cuales *T. harzianum* logra el control biológico de patógenos involucran enzimas en distintas rutas metabólicas en los distintos pasos de interacción con los huéspedes que parasita o con los que interacciona. Estas enzimas, como las descritas en la introducción, posiblemente reflejen diversas adaptaciones evolutivas en el rol biológico de *T. harzianum*. Con el interés de profundizar el estudio y comprensión de tales mecanismos, proponemos realizar un estudio bioinformático para detectar la mayor cantidad de proteínas involucradas en dicho rol para posteriormente caracterizarlas computacionalmente. Nuestra principal labor para tal propósito implica identificar las proteínas involucradas en pasos metabólicos que sustenten la actividad biocontroladora, y utilizar modelos bioinformáticos y evolutivos a nivel de proteínas y de secuencias codificantes para develar patrones de sustitución que sugieren adaptaciones funcionales.

La hipótesis central del presente trabajo sostiene que *Trichoderma* es el género que cuenta con la mayor cantidad de proteínas relacionadas con mecanismos de biocontrol en comparación con organismos evolutivamente cercanos. En este sentido, las proteínas de este género han evolucionado bajo diversos patrones de selección natural para adaptarse a su rol de biocontrol. De esta forma sostenemos que la detección de patrones de neofuncionalización a nivel genómico y proteico en *T. harzianum* sería lo suficientemente sensible como para identificar proteínas involucradas en el rol de control biológico de patógenos.

.

Objetivos

El objetivo general del proyecto propone lograr una mejor comprensión de los mecanismos moleculares que caracterizan la capacidad de *T. harzianum* para actuar como un controlador biológico de patógenos en semillas de interés comercial. Para lograr este objetivo utilizaremos diversas técnicas bioinformáticas para primeramente detectar posibles candidatos y posteriormente realizar una caracterización estructural-funcional con el fin de acumular evidencias que sustenten el rol de dicho candidato. Para tal objetivo planteamos los siguientes objetivos específicos:

- a. Generar una base de datos de proteínas involucradas en mecanismos de biocontrol
- b. Extender la lista de proteínas involucradas en el metabolismo de biocontrol utilizando ortólogos cercanos a *T. harzianum*.
- c. Estimar velocidades de evolución y detección de selección positiva
- d. Identificar posibles genes candidatos adaptados al rol biológico de *T. harzianum* como controlador biológico de patógenos
- e. Estudio de la relación estructura-función de los candidatos

Capítulo 2: Caracterización secuencial y evolutiva de proteínas involucradas en mecanismos de biocontrol

Resumen

Los cambios genéticos observados entre organismos y, consecuentemente, en el tipo de proteínas, definen en general las capacidades metabólicas de los mismos. Como producto del proceso evolutivo, algunos organismos pueden manifestar propiedades que le otorgan ventajas selectivas en determinados ambientes. Estas características pueden incluir cambios sutiles de algunos aminoácidos en determinadas proteínas, duplicaciones o incorporación de genes por eventos de transferencias horizontales.

En este capítulo, buscamos proteínas del género *Trichoderma* con pruebas fehacientes en base experimental de su participación en la capacidad biocontroladora de organismos patógenos. Generamos una base de datos curada que denominamos "Biocontrol" en donde incluimos las proteínas encontradas a las que llamamos "de referencia" y las analizamos en base a sus características secuenciales. Para extender el número de proteínas, realizamos búsquedas por similitud secuencial en genomas de microorganismos evolutivamente cercanos (biocontroladores de insectos y patógenos) y estudiamos la presencia de posibles cambios en las velocidades de evolución de las proteínas biocontroladoras de referencia. Encontramos que estas últimas evolucionan más rápido, lo que implicaría que sufrieron adaptaciones evolutivas a sus roles biocontroladores.

Introducción

Según relatamos en el capítulo anterior, el aumento sustancial en la producción de alimentos provenientes de cultivos extensivos ayudó a satisfacer las necesidades de seguridad alimentaria mundial, pero problemas como la aparición de patógenos resistentes han sometido a las plantas hacia varios tipos de estrés biótico y abiótico que son responsables de la pérdida de rendimiento. Los patógenos fúngicos son el factor limitante más severo para la producción de cultivos en todo el mundo. Además, el uso indiscriminado de fungicidas químicos induce a los patógenos a sufrir mutaciones genéticas que eventualmente se atribuyen a la selección de biotipos resistentes a los fungicidas. Por ejemplo, Fusarium oxysporum se volvió resistente al tiofanato metílico y al clorotalonil por su uso indiscriminado en agricultura (González-Oviedo et al. 2022). Esta especie, es una de las más importantes productoras de micotoxinas que son altamente tóxicas para los animales y las personas. Entre otras enfermedades, puede producir "Tizón de la plántula y podredumbre radical" en trigo (Simón 2015) y "Golpe blanco o fusariosis de la espiga" en Trigo (Simón 2015) y maíz (Díaz 2013). Esta última, también es producida por Giberella zeae que es el más importante en Argentina, si bien se han detectado otras especies (De Galich 1997). Es importante mencionar también la "Podredumbre del cuello" como enfermedad considerable en los cultivos de Algodón, vid, mango, maní y arándanos (https://www.sinavimo.gob.ar /plaga/lasiodiplodia-theobromae) afectando tanto a plántulas como a plantas adultas, produciendo la infección en la zona del cuello u otras áreas en contacto con el suelo. Los primeros síntomas son marchitamiento de ramas laterales o de toda la planta ocasionando finalmente su muerte.

En un intento de encontrar métodos alternativos de manejo de plagas, los sectores agrónomo y comercial han mostrado un gran interés en el desarrollo de estrategias ecológicas y rentables en base a productos de origen biológico (Panth et al. 2020).

Los mecanismos de control biológico mencionados en el apartado "Modo de acción" del capítulo introductorio, se contemplan como medidas importantes para el manejo de enfermedades porque los fungicidas químicos afectan negativamente a otros organismos que no son el objetivo (Köhl et al. 2019). Hay evidencia importante que apoya el hecho de que algunos microorganismos provocan la inhibición del crecimiento de especies patógenas, alterando su metabolismo y/o estableciendo una relación parasitaria (Panth et al. 2020). Además, la aplicación de BCA con concentraciones reducidas de productos guímicos estimula la supresión de enfermedades de manera similar a las altas dosis de tratamientos con fungicidas químicos (Hyder et al. 2017). Alrededor del 90% de los agentes de biocontrol de hongos contra microorganismos patógenos pertenecen a diferentes cepas de Trichoderma (Hermosa et al. 2012). Trichoderma se aisló por primera vez en 1794 del suelo y de la materia orgánica en descomposición (Druzhinina et al. 2006). En todo el mundo, actualmente más del 60 % de los biofungicidas eficaces se obtienen de Trichoderma (Abbey et al. 2019). En la Argentina, el control biológico se desarrolla a escala experimental, a excepción de algunos casos exitosos. La adopción de esta herramienta tiene un alto valor para el diseño de programas sanitarios de escaso impacto ambiental ambiental, pero se enfrenta a la ausencia de tecnologías para la producción masiva de biocontroladores y a la falta de conocimiento sobre el uso del bioinsumo a campo. Actualmente, el 100% de los biofungicidas comerciales existentes son derivados de Trichoderma¹.

Diferentes cepas de *Trichoderma* (teleomorfo *Hypocrea*) se conocen como hongos imperfectos o *fungi imperfecti* ya que no poseen ninguna etapa sexual conocida en su ciclo de vida (Van Wees et al. 2008). Estos hongos son colonizadores rápidos, invasores, filamentosos, oportunistas, avirulentos y exhiben una relación simbiótica con las plantas. En suelos contaminados con patógenos, no solo mejoran el crecimiento de las plantas, sino que también inhiben el crecimiento de patógenos a través de varios mecanismos antagónicos (Vinale et al. 2008; Wilson et al. 2007; Lorito et al. 2010). *Trichoderma* exhibe un comportamiento antagónico contra varios organismos fitopatógenos, incluidas bacterias, nematodos y especialmente hongos, al inhibir su crecimiento ya sea por interacciones directas (p. ej., hiperparasitismo, competencia por nutrientes y espacio, y antibiosis) (Zhang et al. 2017) o indirectamente al mejorar el crecimiento y vigor de las plantas y mejorar la tolerancia al estrés, la absorción activa de nutrientes y la biorremediación de la rizosfera contaminada, además de proporcionar a las plantas varios metabolitos secundarios, enzimas y proteínas que las beneficien (Kumar 2013), como mencionamos en el capítulo anterior.

¹Resolución-350-1999-SENASA - Servicio Nacional de Sanidad y Calidad Agroalimentaria

El control de enfermedades en las plantas, facilitado por los mediadores de biocontrol, es el resultado de las interacciones entre las comunidades simbionte y patógena de la planta. Debido a su capacidad para defender las plantas y controlar las poblaciones de patógenos en diversas circunstancias del suelo, las especies de *Trichoderma* han sido extensamente analizadas y explotadas comercialmente como agentes de biocontrol, mejoradores de suelo y biofertilizantes, ubicando a *Trichoderma spp.* entre los BCA fúngicos más explorados (Vinale et al. 2008; Wilson et al. 2007; Lorito et al. 2010; Harman et al. 2004; Harman 2000). Varias especies de este género son "competentes de la rizosfera" y también pueden descomponer polisacáridos, hidrocarburos, compuestos clorofenólicos y los pesticidas xenobióticos empleados en el cultivo (Li et al. 2009).

Debido a la importancia de *Trichoderma* como agente de biocontrol, consideramos relevante conocer cuáles de sus proteínas están involucradas en los mecanismos de control aquí antes mencionados. Una vez identificadas, estamos interesados en conocer sus propiedades y el origen evolutivo de las mismas. Debido a la relación existente entre biocontroladores y patógenos, reviste especial interés identificar homólogos cercanos entre estas especies. Si los hubiera, proponemos realizar un análisis evolutivo que pudieran indicar adaptaciones funcionales recientes de alguno de éstos.

Búsquedas bibliográficas

Según lo expuesto en la introducción, el género *Trichoderma* resulta de gran interés como propuesta de organismos biocontroladores por lo cual lo hemos adoptado como género objetivo para comenzar nuestros estudios. Por tal motivo, decidimos realizar una búsqueda bibliográfica extensiva con el propósito de encontrar y caracterizar el conjunto de proteínas de las especies contenidas en el género *Trichoderma* que pudieran estar involucradas en los mecanismos de biocontrol antes expuestos. El objetivo final de este procedimiento es generar una base de datos de proteínas que tengan una comprobación experimental de su participación en rutas metabólicas o procesos involucrados en el biocontrol de distintas especies. Debe quedar claro que debemos comenzar nuestro análisis bioinformático recabando información experimental sobre proteínas involucradas en el proceso de biocontrol. Desde el punto de vista enteramente computacional, es difícil o imposible predecir la actividad biológica o la función de una proteína y su efecto biológico en un organismo en base al análisis de la información de una secuencia única. Es por esto que nos basamos en comparaciones de propiedades entre proteínas siempre conociendo de antemano el efecto de determinadas proteínas de "referencia" para una determinada función o actividad.

Para este análisis, utilizamos únicamente palabras clave tales como *"Trichoderma", "biocontrol", "biological control", "protein", "enzyme", "pathogenic organisms", "extensive farming"* y sus combinaciones en buscadores web y en bases de datos, así como NCBI y Pubmed. Inicialmente, encontramos 88 publicaciones que luego se extendieron a 101, por las referencias incluidas en las anteriores. En cada una, encontramos pruebas sobre una o más proteínas que, mediante los mecanismos anteriormente descritos (principalmente micoparasitismo o antibiosis), están involucradas en la actividad biocontroladora. Estas publicaciones mostraron distintas evidencias experimentales, como por ejemplo, en (Arora 2003) encontramos que *Trichoderma* produce y secreta enzimas micolíticas responsables de la degradación parcial de la pared celular de patógenos como *R. Solani.* Dentro de estas enzimas, se mencionan las glucanasas, quitinasas, lipasas y proteasas, demostrando la participación de dichas proteínas en el rol biocontrolador.

Una vez obtenida la lista de proteínas según bibliografía, que en general están referidas por nombres de actividades biológicas genéricas y no incluyen datos secuenciales o de referencia específica a una determinada base de datos, tomamos cada una para explorar y recopilar más información en el buscador principal de UNIPROT. En general, obtuvimos listas de proteínas de *Trichoderma* así como de otras especies. Evidentemente, la identidad de las proteínas no alcanza para limitar las especies a *Trichoderma* y, consecuentemente, también obtuvimos otras especies. Es por esto que en el buscador colocamos el nombre de la proteína, el operador "AND" y la palabra "*Trichoderma*" para obtener sólo los de esta especie. El análisis de las otras especies encontradas se abordará en la sección "Búsquedas por similitud secuencial para extender el número de proteínas biocontroladoras de referencia", que aparece más adelante en este capítulo.

Para poder identificar las proteínas encontradas, utilizamos el parámetro "ID" de UNIPROT. Como resultado encontramos 759 proteínas que, luego de hacer la lista no redundante, resultaron 652. Este conjunto de proteínas constituye nuestra base de datos que llamamos "Biocontrol", cuyas proteínas de aquí en más llamaremos de "referencia" ya que poseen distintas evidencias experimentales que demuestran su rol y/o importancia en el biocontrol de especies. Con estas proteínas utilizamos distintas herramientas bioinformáticas para identificar nuevas proteínas no reportadas en *Trichoderma* o en sus distintas especies además de explorar la presencia de posibles proteínas biocontroladoras en otras especies cercanas a *Trichoderma*.

Caracterización de las proteínas biocontroladoras de referencia

El listado no-redundante de 652 proteínas puede servir como base de referencia y de consulta para el desarrollo de biocontroladores en base a *Trichoderma* y quizás también a otros géneros que pudieran cumplir esta función. Este conjunto de proteínas resulta en información muy valiosa y estratégica para aquellas instituciones dedicadas al estudio o producción de controladores biológicos. Con el objetivo de visualizar características de las proteínas de forma más accesible, agrupamos las mismas según su nombre (Figura 6) y la especie a la que pertenecen (Figura 7).

Figura 6 Distribución de las actividades de proteínas de *Trichoderma spp.* según su identidad biológica conforme a UNIPROT. La categoría "Resto" representa el conjunto de actividades que muestran menos del 2% del total de proteínas. Para su identificación, remitirse a ver el apéndice 2.2.

Figura 7 Distribución de las especies de *Trichoderma* que contienen proteínas relacionadas con mecanismos de biocontrol. La categoría "Resto" representa las especies con menos del 2% del total de proteínas. Para su identificación, remitirse ver el apéndice 2.3.

Según hemos mencionado ya en reiteradas oportunidades, los mecanismos conocidos de control biológico empleados por la especie *T. harzianum* se pueden dividir en dos tipos que involucran

efectos directos e indirectos. La secreción de enzimas hidrolíticas es uno de los mecanismos con efecto directo de los hongos del género *Trichoderma*, para ejercer el control biológico de plagas y enfermedades. Las quitinasas son una de estas enzimas que degradan y/o remodelan la pared celular de los hongos fitopatógenos y la cutícula de insectos y nematodos. En la figura 6 podemos observar que el 51.1% de las proteínas posee actividad quitinasa, lo que demostraría la importancia de su rol en mecanismos de biocontrol. De esta forma, sumando todas las enzimas con actividad lítica, dentro de las que se incluyen las proteasas (aspartato y aspártico proteasas), liasas (fenilalanina amonio-liasa) e hidrolasas, obtenemos que hay aproximadamente un 60% de proteínas con esta función involucradas en el antagonismo de *Trichoderma spp*. y los hongos patógenos. En segunda instancia, con el casi 20% se encontraron enzimas transferasas que podrían, entre otras cosas, mejorar la remediación y el potencial de degradación de compuestos xenobióticos que podrían producir los patógenos y afectar a los cultivos (Dixit et al. 2011). Dentro de este 20% se encuentra, por ejemplo, la Glutatión S-tranferasa, enzima que puede vincularse a procesos de detoxificación de *Trichoderma* (ver apéndice 2.1 para el listado completo de proteínas).

Según podemos observar en la figura 7, entre las proteínas relacionadas con mecanismos de biocontrol obtenidas de bibliografía, el género de *Trichoderma* es el identificado como con mayor proporción de enzimas secretadas. Como veremos más adelante en este capítulo, utilizamos estos datos iniciales para extender el número de proteínas biocontroladoras de referencia, identificar los microorganismos secretores y conocer cual o cuales son los que secretan mayor cantidad de estas enzimas. Para lograr este objetivo utilizamos búsquedas de similitud secuencial.

Análisis de las proteínas biocontroladoras de referencia en base a sus características secuenciales

Para estudiar más en profundidad cómo se distribuyen las actividades de las proteínas en términos evolutivos, hicimos un clustering secuencial agrupando las 652 secuencias al 40% de identidad, utilizando el programa CD-hit. La hipótesis detrás de este procedimiento es caracterizar el número de familias proteicas para luego analizarlas según su divergencia evolutiva. De esta forma el número de miembros por familia o la existencia de familias más divergentes podría indicar familias más antiguas y por ende más importantes debido a su conservación evolutiva.

Este clustering resultó en la formación de 105 clusters de los cuales 59 tienen al menos 2 secuencias y 46 clusters son unimembres indicando una alta diversidad de distintas familias de proteínas. Sin embargo, encontramos que determinadas familias de proteínas se encuentran en distintos clusters secuenciales. Por ejemplo, dentro de las familias con mayor cantidad de clusters, las quitinasas se encuentran en 8 clusters distintos, la familia de péptido sintetasas en 25 y la familia de Glutatión S-transferasa en 30, siendo la que tiene mayor cantidad de proteínas secuencialmente más distintas (Figura 8).

Este hecho indica que estas familias poseen una alta divergencia secuencial indicando posiblemente su importancia funcional en las distintas familias. Sin embargo, este resultado puede sugerir propiedades más interesantes para el objetivo de este trabajo. Quizás, la alta divergencia en estas proteínas indique su adaptación a nuevas funciones biológicas (rol biocontrolador) o también a una gran diversidad funcional.

Figura 8 Cantidad de clusters en los que se encuentran las familias de proteínas con mayor divergencia.

Búsquedas por similitud secuencial para extender el número de proteínas biocontroladoras de referencia

Si bien haber obtenido 652 proteínas de referencia es considerable con respecto a la información actualmente disponible, nos preguntamos si era posible aumentar el número de posibles microorganismos candidatos, la cantidad de proteínas y de nuevas actividades no contenidas en nuestra base de datos de "Biocontrol", como así también realizar estudios evolutivos. Por tal motivo, decidimos buscar especies cercanas a *Trichoderma* en las que pudiéramos encontrar proteínas homólogas.

Definición especies de interés

Mencionamos anteriormente que el control biológico es *"la acción de parásitos, depredadores o patógenos en el mantenimiento de la densidad de población de otro organismo en un promedio más largo de lo que ocurriría en su ausencia".* Un patógeno puede ser cualquier microorganismo capaz de producir alguna enfermedad o daño en un huésped, sea animal o vegetal. Según esto, cualquier microorganismo que ejerza control sobre una plaga o que produzca algún daño en un huésped, podría ser interesante para ser evaluado por su rol en mecanismos de biocontrol. Así es que, formamos 3 grupos de microorganismos compuestos por proteomas de especies de *Trichoderma* para formar el grupo "biocontroladores fungicidas" (BF), distintas cepas de *Beauveria bassiana*, por su conocida acción como bioinsecticida (Singh et al. 2015) para generar el grupo de "biocontroladores insecticidas" (BI) y distintas especies de hongos fitopatógenos para crear el grupo de "patógenos" (P). Consideramos que el análisis de estos organismos con diferentes roles biológicos en el ambiente nos servirá como marco de referencia de las propiedades de las proteínas biocontroladoras.

Selección de proteomas

Obtuvimos 50 especies agrupadas en los grupos mencionados (39 patógenos, 8 biofungicidas y 3 bioinsecticidas) obtenidas de UNIPROT (Tabla 3). Todas las especies surgieron del análisis inicial bibliográfico, en donde pudimos entender el rol biológico de cada una (patógeno o biocontrolador). Como condición para la obtención de proteomas, indicamos en UNIPROT que las especies tengan proteomas completos y que sean de referencia.

Búsquedas de similitud secuencial

Una vez obtenidos los proteomas, realizamos búsquedas de similitud en BLAST utilizando los parámetros estándar. Del resultado seleccionamos proteínas con un porcentaje de identidad mayor a 50% y un E-value menor a 0.0001. En las figura 9, figura 10 y figura 11, se muestra el número de proteínas homólogas a las 652 proteínas de referencia para cada especie, según el grupo de pertenencia (BF, BI y P).

Tabla 3 Especies utilizadas clasificadas según su grupo de pertenencia (BF, BI y P) y número de proteínas homólogas.

Especie	Número de homólogas	Categoría
Trichoderma longibrachiatum	136	BF
Hypocrea jecorina	140	BF
Trichoderma asperellum	162	BF
Trichoderma arundinaceum	171	BF
Hypocrea atroviridis	173	BF
Trichoderma gamsii	176	BF
Trichoderma harzianum	189	BF
Trichoderma harzianum	194	BF
Beauveria bassiana	118	BI
Beauveria bassiana	120	BI
Beauveria bassiana	121	BI
Metarhizium album	90	Р
Metarhizium rileyi	100	Р
Lasiodiplodia theobromae	114	Р
Gibberella fujikuroi	118	Р
Fusarium venenatum	119	Р
Stachybotrys chlorohalonata	120	Р
Fusarium acutatum	124	Р
-----------------------------------	-----	---
Metarhizium acridum	124	Р
Fusarium heterosporum	126	Р
Fusarium sporotrichioides	126	Р
Fusarium zealandicum	127	Р
Fusarium austroafricanum	128	Р
Fusarium culmorum	128	Р
Fusarium gaditjirri	129	Р
Fusarium longipes	129	Р
Gibberella zeae	130	Р
Fusarium poae	132	Р
Fusarium oxysporum f. sp.		
conglutinans	133	Р
Metarhizium anisopliae	133	Р
Fusarium globosum	134	Р
Gibberella moniliformis	134	Р
Fusarium oxysporum f. sp. cubense	135	Р
Fusarium kuroshium	137	Р
Fusarium oxysporum	137	Р
Fusarium sp.	137	Р
Fusarium oxysporum	138	Р
Fusarium vanettenii	138	Р
Fusarium phyllophilum	139	Р
Fusarium mundagurra	140	Р
Fusarium pseudocircinatum	140	Р
Fusarium flagelliforme	142	Р
Fusarium sp.	143	Р
Gibberella nygamai	143	Р
Fusarium sp.	145	Р
Fusarium napiforme	146	Р
Fusarium sp.	148	Р
Fusarium albosuccineum	150	Р

Fusarium sarcochroum	151	Р
Fusarium sp.	168	Р

Figura 9 Número de proteínas homólogas en especies de biofungicidas.

Figura 10 Número de proteínas homólogas en especies de bioinsecticidas.

Figura 11 Número de proteínas homólogas en especies de patógenos.

Según el análisis anterior, observamos que las especies de biocontroladores fúngicos son aquellas que tienen mayor contenido de proteínas homólogas a las proteínas de referencia con 194 proteínas, siendo *Trichoderma harzianum* la más enriquecida (figura 9). Este resultado era esperable, dado que el grupo de BF está conformado 100% por especies de *Trichoderma/Hypocrea* que son las mismas de las que obtuvimos las proteínas con las que generamos la base de datos "Biocontrol". Nos resultó llamativo encontrar que el grupo de patógenos contiene especies que también tienen gran cantidad de proteínas homólogas, como es el caso de *Fusarium* que podemos ver en la figura 11, a diferencia de los BI, que son los que tienen menor cantidad de homólogas, como se puede ver en la figura 10. De todas formas, es importante destacar que los grupos no son homogéneos en cuanto a la cantidad de especies que contienen y quizás encontraríamos mayor porcentaje de proteínas homólogas en el grupo de BI si el grupo fuera más grande.

Análisis de organismos de referencia de cada grupo

Seguidamente, tomamos el organismo de referencia con mayor contenido de proteínas homólogas (*Trichoderma harzianum* para Biocontroladores fúngicos, *Beauveria bassiana* para Biocontroladores de insectos y *Fusarium* sp. para patógenos) como organismo modelo para cada grupo biológico para explorar sus actividades biológicas principales, que se muestran en las figura 12, figura 13 y figura 14.

Figura 12 Distribución de las actividades biológicas encontradas por búsqueda de similitud secuencial en *Trichoderma harzianum* sobre el total de las proteínas homólogas encontradas. La categoría "Resto" representa el conjunto de actividades que muestran menos del 2% del total de proteínas homólogas. Para su identificación, remitirse a ver Apéndice 2.4.

Figura 13 Distribución de las actividades biológicas encontradas por búsqueda de similitud secuencial en *Beauveria bassiana* sobre el total de las proteínas homólogas encontradas. La categoría "Resto" representa el conjunto de actividades que muestran menos del 2% del total de proteínas homólogas. Para su identificación, remitirse a ver Apéndice 2.4.

Figura 14 Distribución de las actividades biológicas encontradas por búsqueda de similitud secuencial en *Fusarium sp.* sobre el total de las proteínas homólogas encontradas. La categoría "Resto" representa el conjunto de actividades que muestran menos del 2% del total de proteínas homólogas. Para su identificación, remitirse a ver Apéndice 2.4.

Como primera observación, es interesante resaltar que el 65% de las proteínas homólogas de *Trichoderma harziaum* están representadas por 3 funciones biológicas, que son la actividad Glutatión S-transferasa con un 21,1%, la actividad carrier con un 16% y la actividad quitinasa con un 10,8%, como las 3 mayoritarias. Esto es diferente en las proteínas homólogas de *Beauveria bassiana* y *Fusarium sp.*, dado que tienen casi la mitad de sus proteomas con actividades que representan menos del 2% del total de proteínas homólogas, por lo que podríamos pensar en que hay mayor divergencia de actividades en estos proteomas. Es notable observar que el tipo de proteína mayoritaria en contenido se repite en *Trichoderma harzianum y Fusarium sp* siendo Glutatión S-transferasa las más abundantes para estas especies, mientras que las sintetasas resultan predominantes para *Beauveria bassiana*.

Para poder realizar un análisis comparativo, realizamos una lista no redundante de las proteínas homólogas encontradas y seleccionamos aquellos genes en los que hubiera representantes en los tres nichos ecológicos (BI, BF y P). Esto arrojó un total de 17 tipos de proteínas compartidas que se muestran en la tabla 4. El listado completo de proteínas para cada especie se encuentra en el apéndice, tal como se mencionó anteriormente.

Tabla 4 Listado de actividades biológicas encontradas por búsqueda de similitud secuencial para la especie mayoritaria de cada grupo sobre el total de las proteínas homólogas encontradas que son comunes a los 3 grupos.

Lista na	Número de proteínas homólogas						
redundante	Trichoderma harzianum	Beauveria bassiana	Fusarium sp.				
Glutatión S- Transferasa	41	12	22				
Quitinasa	21	11	10				
Hidrolasa	7	2	3				
Peptidasa	6	1	2				
Catalasa	4	2	2				
Ligasa	3	2	3				
Kinasa	3	1	2				
Sintasa	2	12	1				
Superóxido dismutasa	2	2	2				
Arabinofurano sidasa	2	1	3				
ATPasa	2	1	2				
Sintetasa	1	16	4				
Reductasa	1	2	10				
Glucoamilasa	1	1	2				
Permeasa	1	1	1				
Polimerasa	1	1	1				
Transporter	1	1	1				

Según la tabla 4, podemos ver que, con excepción de algunas actividades (Sintasa, Sintetasa, Reductasa y Glucoamilasa) es *Trichoderma harzianum* la especie que mayor contenido de proteínas homólogas contiene en las categorías, por sobre *Beauveria bassiana y Fusarium sp.* Por ejemplo, en el caso de la Glutatión S-Transferasa, vemos que mientras que *Trichoderma harzianum* tiene 41 genes, *Beauveria bassiana y Fusarium sp.* tienen 12 y 22, respectivamente. Estos 41 genes de *Trichoderma* representan un 0,3% del total de su proteoma (de 14049 proteínas en total), mientras que los genes para los otros 2 nichos refieren a menos del 0,2% de sus proteomas respectivamente (10656 proteínas *Beauveria bassiana* y 16532 *Fusarium sp.*). Una tendencia similar puede observarse para la familia de las quitinasas, en donde se observa que mientras que *Trichoderma harzianum* tiene 21 genes, *Beauveria bassiana* y *Fusarium sp.* sólo tienen 11 y 10 respectivamente. Estos 21 genes de *Trichoderma* representan un 0,15% del total de su proteoma, mientras que los 9

genes para los otros 2 nichos refieren a menos del 0,1% de sus proteomas. Cabe recordar que, tanto Glutatión S-transferasa como Quitinasa son familias de proteínas con alta divergencia secuencial indicando posiblemente su adaptación a nuevas funciones biológicas o también una gran diversidad funcional, según se podía observar en la figura 8, anteriormente representada.

Análisis de proteínas de "Biocontroladores fúngicos"

En esta sección nos propusimos comparar el número de genes en las distintas especies del grupo de "biocontroladores fúngicos", dado que representan el objetivo central de nuestro trabajo. Para ello realizamos el curado de los genes de los 7 biofungicidas con proteoma completo que quedaban sin analizar (*Trichoderma longibrachiatum, Hypocrea jecorina, Trichoderma asperellum, Trichoderma arundinaceum, Hypocrea atroviridis, Trichoderma gamsii y Trichoderma harzianum*) y comparamos el número de homólogos por cada categoría (ver apéndice 2.5).

En este análisis, podemos observar que para las actividades Carrier, Glutatión S-transferasa y Quitinasa, la especie de *Trichoderma harzianum* es la que tiene mayor contenido con un total de 194 proteínas, tal como se puede ver en la tabla 5.

Tabla 5 Actividades biológicas principales encontradas por búsqueda de similitud secuencial para todas las especies de biocontroladores fúngicos sobre el total de las proteínas homólogas encontradas en cada caso. Los números "189" y "194" corresponden al número de proteínas homólogas de las dos especies *harzianum*, tal como se muestra en la tabla 3. La descripción total de actividades se encuentra en el Apéndice 2.5.

Proteínas	Longibrachiatum	Jecorina	Asperellum	Arundinaceum	Atroviridis	Gamsii	Harzianum 189	Harzianum 194
Carrier	1	1	19	0	7	13	12	31
Glutatión S-transferasa	23	3	35	25	35	35	29	41
Quitinasa	12	11	17	17	16	17	17	21

Si bien *Trichoderma harzianum* es la especie que tiene mayor cantidad de proteínas en la mayoría de las actividades, esto no siempre ocurre. Hay algunas actividades, por ejemplo, la actividad sintasa (ver apéndice 2.5) en la que otra especie (*Arundinaceum*), es la que tiene mayor cantidad de esas proteínas. Podemos deducir entonces que, si bien es valioso poseer gran cantidad de proteínas relacionadas con actividades de biocontrol, no todas éstas son igualmente importantes ya que, hay evidencia experimental que *harzianum* es una de las mejores y mayormente elegida como biocontrolador fúngico. Consideramos que es probable que el éxito en el biocontrol puede estar mayormente relacionado con una combinación de proteínas o propiedades especiales de cada proteína, más que en el número final. En este punto, será interesante el abordaje que tomemos en el capítulo siguiente de selección positiva.

Si bien no se muestra en la tabla 5, resulta llamativo que para la especie *T. jecorina* 76 de sus 140 homólogas están identificadas como *"predicted proteins"* según UNIPROT, dado que las proteínas de biocontrol están mayormente bien identificadas. Con nuestro trabajo, hemos logrado anotar estas 76 proteínas para este proteoma pobremente caracterizado, realizando el análisis por homología a

las 652 proteínas biocontroladoras. Esta importante información derivada por homología se encuentra desarrollada en el apéndice 2.6.

¿Tienen alguna particularidad especial las proteínas biocontroladoras de referencia?

Como describimos anteriormente, las proteínas biocontroladoras de referencia pertenecen a los grupos principales de quitinasas, transferasas y sintetasas y, por lo tanto, pertenecen a familias de proteínas distintas por lo cual no son proteínas homólogas. En esta sección estamos interesados en encontrar alguna propiedad común que pueda ser utilizada en forma extensiva para caracterizar nuevas proteínas con posible rol biocontrolador. Para este propósito utilizaremos técnicas evolutivas. La velocidad de evolución es una propiedad que podría indicar adaptaciones funcionales recientes (Jobson et al. 2004; Wang et al. 2011). Determinadas proteínas con ciertas funciones biológicas podrían adaptarse a nuevas funciones y actividades con algunas sustituciones adicionales. En general estos cambios secuenciales se dan cuando determinados organismos cambian su nicho biológico o su entorno.

De esta forma, utilizamos representantes de los tres grupos de organismos ("biocontroladores fungicidas", "biocontroladores insecticidas" y "patógenos") para estudiar la presencia de posibles cambios en las velocidades de evolución de las proteínas biocontroladoras de referencia. Como las velocidades de evolución entre proteínas sólo son comparables entre sí cuando el árbol filogenético es el mismo, utilizamos la herramienta OMA, para obtener el mayor conjunto posible de homólogos para la mayor cantidad posible de organismos pertenecientes a los 3 grupos mencionados anteriormente. En la figura 15 mostramos la representación de las relaciones evolutivas de estos organismos.

Primeramente, comparamos las velocidades de evolución de proteínas ortólogas entre organismos patógenos y biocontroladores fungicidas. En la base de datos OMA pudimos seleccionar para 10 especies representantes de los grupos mencionados (Figura 16) 3163 conjuntos de ortólogos. Utilizando una proteína seleccionada al azar de este conjunto de ortólogos obtuvimos un árbol filogenético de referencia para las 10 especies, utilizando el programa PhyML. La selección de la proteína es arbitraria y sólo buscamos obtener una representación filogenética de las especies para comparar las velocidades de todas las proteínas entre sí. El árbol filogenético obtenido se muestra en la figura 17. Utilizando el programa Rate4site, calculamos las velocidades para cada una de las proteínas obtenidas de la base de datos OMA utilizando el modelo LG + F + una distribución gamma de 16 estados. Utilizando los códigos UNIPROT y la colección de proteínas biocontroladoras de referencia mencionadas anteriormente (Base de datos "Biocontrol") identificamos sólo 7 proteínas presentes en el set de 3163 conjuntos de ortólogos de OMA. Dado este bajo número decidimos utilizar las 7129 proteínas identificadas en organismos evolutivamente cercanos para identificar homólogos en los 3163 ortólogos de OMA recuperados. Estas 7129 proteínas corresponden a la suma no redundante de las proteínas de todas las especies de la tabla 3 más las 652 antes mencionadas. Al realizar este mapeo encontramos 62 familias de ortólogos pertenecientes a proteínas biocontroladoras de referencia (ver apéndice 2.7).

Figura 15 Representación de las relaciones evolutivas de "biocontroladores fungicidas", "biocontroladores insecticidas" y "patógenos" realizado con OMA.

Figura 16 Selección de organismos utilizados en la comparación de patógenos con biocontroladores fungicidas.

Figura 17 Árbol filogenético para las especies de biocontroladores fúngicos y patógenos realizado utilizando una proteína seleccionada al azar del conjunto de ortólogos.

Comparamos entonces las velocidades de estas 62 proteínas con el resto de las proteínas encontradas (denominadas de aquí en más proteínas no involucradas en mecanismos de biocontrol o "No biocontrol"). Estas proteínas no tendrían, en principio, un rol esencial en las actividades de biocontrol ya que no surgieron en las búsquedas de similitud secuencial realizadas anteriormente. De esta forma este conjunto de proteínas "No biocontrol" sirven como referencia para contrastar con ellas las velocidades de las proteínas biocontroladoras. Así, encontramos que las velocidades de las proteínas identificadas como biocontroladoras eran significativamente más grandes (p-valor=0.0727) que las proteínas de "No biocontrol" (figura 18) realizando un test de Wilcoxon con un un nivel de significancia de 0.1 utilizando el software para análisis estadístico, InfoStat (ver apéndice 2.8).

Figura 18 Comparación de las distribuciones "Biocontrol" y "No biocontrol" en representación de gráficos de cajas. Se observan diferencias significativas (p-valor=0.0727) entre las medias de las distribuciones con un nivel de significancia de 0.1, utilizando el test de Wilcoxon.

Estas 62 proteínas biocontroladoras tienen actividades muy distintas entre sí. No obstante, podríamos decir que las actividades Glutatión S-transferasa, polimerasa y sintetasa son las que más se repiten según las funciones descritas en UNIPROT. Las actividades se encuentran en su totalidad en el apéndice 2.7.

Repetimos el mismo análisis, pero ahora comparando proteínas de biocontroladores fungicidas con biocontroladores insecticidas, utilizando nuevamente familias de ortólogos extraídas de OMA. En este caso utilizamos 6 especies (*Hypocrea atroviridis, Hypocrea jecorina, Hypocrea virens, Trichoderma harzianum, Beauveria bassiana y Cordyceps militaris*) y pudimos recolectar 3724 familias de ortólogos comunes para las 6 especies. El árbol filogenético fue obtenido utilizando el programa Phyml como explicamos anteriormente utilizando un alineamiento tomado al azar entre los ortólogos de las especies mencionadas anteriormente. El mismo se muestra en la figura 19.

Figura 19 Árbol filogenético pasa las especies de biocontroladores fúngicos y biocontroladores de insectos realizado utilizando una proteína seleccionada al azar del conjunto de ortólogos.

Cuando mapeamos los códigos UNIPROT como explicamos anteriormente, encontramos 78 proteínas biocontroladoras de referencia. Al estudiar las velocidades de evolución de estas 78 proteínas, no encontramos diferencias significativas (p-valor=0.1451) con las proteínas "No biocontrol" (básicamente el resto de las 3721 proteínas) con un nivel de significancia de 0.1 (figura 20).

Figura 20 Comparación de las distribuciones "Biocontrol" y "No biocontrol" en representación de gráficos de cajas. No se observan diferencias significativas (p-valor=0.1451) entre las medias de las distribuciones con un nivel de significancia de 0.1, utilizando el test de Wilcoxon.

Estos resultados son interesantes. En principio parecería que los cambios adaptativos ocurrieron cuando los organismos biocontroladores fungicidas se separaron de los organismos patógenos, hace

aproximadamente unos 200 millones de años según datos recopilados de Timetree que se pueden ver en la figura 21. Según estos datos, los organismos biocontroladores insecticidas se separaron de los fungicidas hace aproximadamente 180 millones de años, con lo cual las adaptaciones funcionales ocurrieron entre los patógenos y los dos grupos de organismos biocontroladores. Este razonamiento se deriva del hecho que la velocidad de evolución entre los organismos biocontroladores es similar, pero no se observa lo mismo cuando se comparan las velocidades de biofungicidas con las velocidades de organismos patógenos.

Figura 21 Escala evolutiva obtenida de Timetree para organismos patógenos, biocontroladores fungicidas e insecticidas.

Comentarios adicionales sobre velocidades de evolución

En la sección anterior mostramos la utilidad del uso de las velocidades de evolución para detectar la presencia de una presión selectiva común a la mayoría de las proteínas con rol biocontrolador (Figuras 18 y 20). Si bien los resultados son estadísticamente robustos, las velocidades de evolución entre proteínas pueden ser influenciados por muchos factores (para un review ver (Zhang and Yang 2015)). Si bien muchísimos factores han sido identificados como posibles moduladores de la velocidad de evolución (por citar algunos, desorden (Brown et al. 2002), longitud (Bloom et al. 2006), diversidad conformacional (Zea et al. 2013), nivel de expresión (Holstege et al. 1998) y abundancia, importancia biológica (Hurst and Smith 1999), etc) el factor con mayor valor predictivo, de mayor consistencia en diversas especies y ampliamente estudiado es el nivel de expresión génico (Cherry 2010; Greenbaum et al. 2003; Managadze et al. 2011; Drummond et al. 2005). Se ha demostrado que las proteínas que se expresan mucho están sujetas a una fuerte presión selectiva en el proceso de traducción, en la síntesis de proteínas. Cualquier error en este proceso (sustitución/deleción), y debido a su alta expresión y abundancia, podría producir la agregación de la proteína produciendo un cuadro tóxico para la célula que en general conduce a su destrucción por apoptosis (Drummond et al. 2005; Stefani and Dobson 2003; Stroo et al. 2017).

Para comprobar nuestros resultados anteriores y determinar si las velocidades observadas se deben a un cambio adaptativo en las proteínas o si es un artefacto debido a los niveles de expresión de las proteínas estudiadas, debemos normalizar nuestros resultados con los niveles de expresión de dichos genes. Dichos datos en general son datos experimentales que se obtienen por tecnologías de RNAseq. Lamentablemente no contamos con esos datos para los proteomas estudiados. Sin embargo, existe un parámetro denominado CAI que mide la proporción del denominado "codon bias" entre un determinado conjunto de genes y un conjunto de genes de referencia (Sharp and Li 1987). El "codon bias" se refiere al hecho que determinados codones sinónimos se usan con mayor frecuencia que otros (Sharp and Li 1986). En determinadas células, tejidos y/o especies la población de tRNA para un determinado aminoácido no es completa o existen diferencias en sus concentraciones relativas. Esto produce que la distribución de codones sinónimos no sea aleatoria. De ahí que la velocidad o eficiencia en la traducción esté regulada por la abundancia relativa de los tRNA (y de ahí de sus anticodones) y de los codones que presente el gen a traducir o sintetizarse. Este desfase se denomina "codon bias" (Behura and Severson 2013) el cual puede depender de otros factores como contenido GC, posiciones de los codones en el mRNA, frecuencia de recombinación etc. El "codon bias" fue largamente asociado al nivel de expresión de las proteínas, ya que dichos genes en general muestran los codones más eficientes para lograr una síntesis proteica optimizada (Post and Nomura 1980). De aquí se desprende que existe una correlación positiva entre CAI y nivel de expresión génica (Wu et al. 2005; Henry and Sharp 2007).

En nuestro caso y ante la ausencia de datos experimentales correspondientes a los niveles de expresión de los genes de *T. harzianum*, decidimos utilizar el CAI para predecir su nivel de expresión. Dependiendo del organismo y genes analizados, la correlación entre CAI y nivel de expresión llega a tener un valor predictivo alto con correlaciones que alcanzan valores de 0.7 o incluso 0.987 (Jansen et al. 2003; Song et al. 2017). Para esto, bajamos las regiones codificantes de cada gen utilizado en el test de velocidades de evolución, utilizando nuevamente la base de datos OMA. Pudimos caracterizar 1605 regiones codificantes y sus correspondientes CAI, que contenían 31 genes de biocontroladores y 1573 de "No biocontrol". Para calcular el CAI, utilizamos el programa E-CAI (Puigbò et al. 2008). Al graficar CAI versus las velocidades de evolución obtuvimos el comportamiento esperado, ya que la velocidad de evolución varía en forma inversamente proporcional con el CAI (Figura 22). Pudimos comprobar esto estadísticamente realizando el test de Pearson con un coeficiente de correlación de -0,2. De esta forma las proteínas con mayor CAI (que se predicen como con grandes niveles de expresión) evolucionan más lento que el resto según lo expresado anteriormente.

Figura 22 Velocidades de evolución vs CAI. Las proteínas más rápidas tienen menores cai

Cuando comparamos los CAI del grupo de genes de biocontrol en *T. harzianum* y lo comparamos con el resto de los genes "No biocontrol", no encontramos diferencias significativas (p-valor=0.2964) con alfa 0,1 (ver apéndice 2.8). Sin embargo, estimando el poder estadístico para un test que evalúe las medias entre ambas poblaciones, se requeriría de aproximadamente 300 datos de proteínas biocontroladoras para poder compararlas con las proteínas de control y tener un poder de 0.9. Así, decidimos hacer un *bootstraping* para evaluar si existen diferencias significativas entre ambas poblaciones. De esta forma, como sólo tenemos 31 valores de CAI para las proteínas biocontroladoras, tomamos 500 muestras al azar de 31 valores cada una, muestreando con reemplazo la población de 1573 proteínas de control. Al comparar ambas distribuciones encontramos que la población de CAI correspondiente a las proteínas biocontroladores es mayor y difiere estadísticamente (p-valor <0.0001) de la población de "No biocontrol" (Figura 23) con significancia 0.1 (ver apéndice 2.8).

Figura 23 Comparación de las distribuciones "Biocontrol" y "No biocontrol" en representación de gráficos de cajas. Se observan diferencias significativas (p-valor <0.0001) entre las medias de las distribuciones con un nivel de significancia de 0.1, utilizando el test de Wilcoxon.

Este resultado demuestra que las proteínas con roles en biocontrol, son proteínas con grandes sesgos en sus CAI, lo cual implicaría que se expresan mucho. Por lo comentado anteriormente, esto significaría que dichas proteínas deberían evolucionar entre las más lentas del proteoma, lo cual se contradice con lo encontrado anteriormente (ver figura 18). Esto demuestra que las velocidades encontradas en dicho grupo de proteínas, no se ven influenciadas por sus niveles de expresión que es uno de los principales moduladores de la velocidad de evolución. De ahí, podemos validar nuestra conclusión inicial que la observación de las altas velocidades evolutivas en las proteínas biocontroladoras se deba al hecho que sufrieron adaptaciones evolutivas a sus nuevos roles biocontroladores, ocurridos aproximadamente hace unos 160 millones de años atrás, cuando se separaron de los organismos patógenos.

Conclusiones

En el presente capítulo agrupamos y caracterizamos una amplia lista de proteínas involucradas en mecanismos de control de patógenos. Consideramos que esta lista es la más amplia y completa descrita hasta el momento, constituyendo la primera base de datos de referencia de proteínas biocontroladoras. De esta forma, creemos que esta herramienta será valiosa y estratégica para aquellas instituciones dedicadas al estudio o producción de controladores biológicos, para caracterizar nuevas cepas y organismos o para derivar estudios de relación estructura-función mostrando, por ejemplo, adaptaciones en una determinada proteína.

A esta base de datos, que originalmente fue de 652 proteínas obtenidas de la literatura, logramos incrementarla en un 1200% cuando hicimos las búsquedas por similitud secuencial, encontrando nuevas proteínas, que fueron clasificadas según su actividad e identificadas cuali y cuantitativamente en proteomas de referencia. Además de esto, pudimos detectar una propiedad común, la velocidad de evolución, que podrá ser utilizada en forma extensiva para caracterizar nuevas proteínas con posible rol biocontrolador. Este parámetro podría ser tomado como una explicación mecanística que agrupa proteínas completamente distintas en plegamientos y secuencias que permite su estudio y quizás también predicción.

Mediante las técnicas de análisis evolutivo que utilizamos a lo largo de esta sección, pudimos comprobar que *Trichoderma* es el mejor género y *harzianum* resulta la especie más interesante como agente de control biológico, dado que tiene mayor cantidad de proteínas involucradas en mecanismos de biocontrol que pudimos caracterizar en cuanto a sus actividades biológicas. Además, encontramos que dichos genes evolucionaron más rápidamente, cuando realizamos comparaciones con especies cercanas, lo que indicaría adaptaciones funcionales a su rol biológico. Este acercamiento computacional, podría extenderse a otras especies aún no caracterizadas, dando lugar a predicciones que intenten dar una base racional a las propiedades de estos organismos, que luego deberán evaluarse experimentalmente.

Por lo antes expuesto, consideramos este capítulo un aporte relevante dado que creemos haber realizado el primer análisis bioinformático a gran escala, pudiendo analizar exhaustivamente proteínas y organismos involucrados en el biocontrol.

Capítulo 3: Detección de selección positiva como herramienta para caracterizar proteínas biocontroladoras

Resumen

En este capítulo, realizamos un análisis de parte del genoma de *Trichoderma* para detectar proteínas que evolucionan bajo patrones de selección positiva para revelar la naturaleza bioquímica de su capacidad para controlar diferentes plagas. Generalmente, las proteínas que evolucionan bajo presión selectiva positiva están vinculadas a adaptaciones funcionales recientes que podrían explicar la biología de esta especie. Las diferencias de velocidades encontradas en el capítulo anterior entre proteínas de organismos patógenos y biocontroladores parecería sugerir la existencia de este patrón de selección.

Usamos un método recursivo para seleccionar diferentes conjuntos de proteínas ortólogas de OMA para diferentes especies relacionadas con *Trichoderma harzianum*. Para cada conjunto, construimos alineamientos de regiones codificantes y alineamientos de proteínas correspondientes. Esta información fue utilizada para estimar la presencia de selección positiva a nivel de rama o cluster evolutivo, así como también a nivel de secuencia. Para tal propósito usamos métodos de máxima verosimilitud validando su predicción con la prueba estadística de chi cuadrado. Utilizando estos métodos pudimos identificar 128 proteínas que, si bien, 28 son homólogas a proteínas que habíamos encontrado en el capítulo anterior, encontramos 100 nuevas proteínas que no habíamos detectado previamente.

Introducción

En el capítulo anterior vimos que la velocidad de evolución es una propiedad común de las proteínas que puede ser utilizada en forma extensiva para caracterizarlas e, incluso, identificar nuevas proteínas con determinados roles. La velocidad de evolución nos permite determinar proteínas que evolucionan con selección positiva, lo que implica la existencia de un alejamiento de la neutralidad en el patrón de sustitución de los codones de un determinado gen y típicamente se asocia a cambios adaptativos a nuevos roles biológicos (Zhang 2008). Los estudios que involucran el uso de esta herramienta se pueden realizar a gran escala, es decir a nivel genómico para detectar posibles candidatos como biocontroladores, que deberán ser posteriormente caracterizados en forma estructural y eventualmente en forma experimental.

La detección de selección positiva requiere del uso de genes ortólogos (aquellos que divergen por el proceso de especiación) y evitar el uso de genes parálogos (aquellos que divergen por duplicación génica). Esto es una condición para que las velocidades de evolución de los distintos genes estudiados sean comparables entre sí.

Los casos más convincentes de evolución molecular adaptativa (selección positiva) han sido identificados a través de la comparación de tasas de sustitución de sinónimos (silencioso; dS) y no sinónimos (dN) en secuencias de ADN que codifican proteínas, que han proporcionado casos de estudio fascinantes de selección natural de estas moléculas (Desalle 2000).

Tradicionalmente, las tasas de sustitución de sinónimos y no sinónimos (Tabla 6 izq.) se definen en el contexto de comparar dos secuencias de ADN, con dS y dN como el número de sustituciones sinónimas y no sinónimas por sitio, respectivamente (Miyata and Yasunaga 1980). Así, la proporción ω =dN/dS mide la diferencia entre las dos tasas y es más fácil de entender el modelo de sustitución de codones con una descripción matemática (Tabla 6 der.). Si el cambio de un aminoácido es neutral, se fijará a la misma tasa que una mutación sinónima, con ω =1. Si el cambio de aminoácido es deletéreo, selección depurativa, se reducirá su tasa de fijación y, por lo tanto, ω <1. Sólo cuando el cambio de aminoácido ofrece una ventaja selectiva, es que se fija en un nivel más alto que una mutación sinónima, con ω >1. Por lo tanto, una relación ω significativamente más alta que 1 es una evidencia contundente de selección positiva.

La selección positiva ha sido implementada para poder explicar nuevas funcionalidades tales como la adaptación de camélidos en climas extremadamente cálidos y secos de los territorios africanoasiáticos y en ambiente frío e hipóxico de gran altitud de toda el área andina mediante del estudio de las subunidades I, II y III de la citocromo c oxidasa (Di Rocco et al. 2006); la adaptación de los monos chinos de nariz chata a un entorno de gran altitud, mostrando una notable capacidad para tolerar bajas temperaturas e hipoxia mediante el estudio adaptativo en los genes NADH2 y NADH6 (Yu et al. 2011) y el aumento de la capacidad del almacenamiento de oxígeno y la prolongación del tiempo de inmersión de los cetáceos analizando la evolución de su mioglobina (Dasmeh et al. 2013), entre otros.

El análisis basado en codones (Tabla 7) no puede inferir si las sustituciones sinónimas son impulsadas por mutación o selección, pero no asume que son neutrales. Por ejemplo, el uso de codones altamente sesgados puede ser causado tanto por el sesgo mutacional como por la selección, y también puede afectar en gran medida a las tasas de sustitución. Sin embargo, al emplear parámetros como la frecuencia del codón *j* en el modelo (π_{j}) (Tabla 6 der.), la estimación de las tasas de sustitución tendrá en cuenta completamente el sesgo de uso de codones (Tabla 6 izq.), independientemente de su fuente. Como el parámetro ω es una medida de la presión selectiva sobre una proteína, esto se diferencia con los análisis basados en codones de las pruebas más generales de neutralidad propuesta en genética de poblaciones (Kreitman and Akashi 1995; Wayne and Simonsen 1998). Estos tests generales, a menudo carecen del poder para determinar las fuentes de la desviación del estricto modelo neutral, tales como cambios en tamaño de la población, entorno fluctuante o diferentes formas de selección.

Tabla 6 Glosario de selección positiva (izquierda) y descripción matemática del modelo de sustitución de codones (derecha) (Yang and Bielawski 2000).

Glosario	Modelo de sustitución de codones		
Sesgo de uso de codones: frecuencias de	El codón es considerado la unidad de evolución.		
codones desiguales en un gen.	La tasa de sustitución de codones i a j (i es		

Sustitución no sinónima : sustitución de nucleótido que cambia el aminoácido codificado. Probabilidad previa : la probabilidad de un	distinto de j) está dada como:		
evento (como un sitio perteneciente a un	q _{ij} = 0 si <i>i</i> y <i>j</i> difieren en más de 1 posición		
clase) antes de la recopilación de datos.	q _{ij} = π _j para transversiones sinónimas		
file mutaciones ventaiosas con coeficientes	$q_{ij} = \kappa m_i$ para transiciones sinonimas		
selectivos positivos El término se usa	$q_{ij} = \omega_{mi}$ para transversiones no sinónimas		
indistintamente en adaptación molecular v	q_{ij} = $\omega \kappa w_j$ para transiciones no sinonimas		
evolución molecular adaptativa.	El parámetro κ es la relación de la tasa		
Probabilidad posterior: la probabilidad de un	transición/transversión, π_i es la frecuencia de		
evento condicionada a los datos observados,	equilibrio del condón j y ω (=dN/dS) mide la		
que reflejan tanto la suposición previa como la	presión selectiva sobre la proteína. Los q _{ij} son		
información en los datos.	tasas relativas porque el tiempo y la tasa se		
Seleccion purificadora: seleccion natural	confunden en tal análisis. Dada la matriz de		
contra mutaciones deletereas con coefficientes	tasas Q = $\{q_{ij}\}$, la probabilidad de transición		
indistintamente con selección negativa o	la matriz en el tiempo t se calcula como:		
restricciones selectivas	$D(t) = (p(t)) = p^{0}t$		
Sustitución sinónima: una sustitución de	$P(t) = \{P_{ij}(t)\} = e^{-t}$		
nucleótidos que no cambia el aminoácido	donde n _e (t) es la probabilidad de que el codón <i>i</i>		
codificado.	se convierta en el codón <i>i</i> después del tiempo t		
Sesgo de la tasa de transición/transversión:	El cálculo de probabilidad de una filogenia		
tasas de sustitución desiguales entre	implica sumar todos los codones posibles en		
nucleótidos, con una mayor tasa de transiciones	ancestros extintos (nodos internos del árbol)		
(cambios entre T y C y entre A y G) que	(Goldman and Yang 1994; Yang and Nielsen		
transversiones (todos los demás cambios).	1998; Yang 1998; Hasegawa et al. 1998).		

Tabla 7 Estimación de dN y dS entre los genes de globina α_2 humana y de orangután. Tabla tomada de (Yang and Bielawski 2000).

Method and/or model	к	S	Ν	d _N	ds	$d_{\rm N}/d_{\rm S}$ (w)	ℓ°	Refs
Approximate methods								
Nei and Gojobori	1.0	109.4	316.6	0.0095	0.0569	0.168	-	9
Li	-	NA	NA	0.0104	0.0517	0.201	-	11
Ina	2.1	119.3	299.9	0.0101	0.0523	0.193	-	14
Yang and Nielsen	6.1	61.7	367.3	0.0083	0.1065	0.078	-	15
ML methods ^b								
 Fequal, κ = 1 	1.0	108.5	317.5	0.0093	0.0557	0.167	-633.67	16
(2) Fequal, κ estimated	3.0	124.6	301.4	0.0099	0.0480	0.206	-632.47	16
(3) F1×4, $\kappa = 1$ fixed	1.0	129.1	296.9	0.0092	0.0671	0.137	-612.40	16
(4) F1×4, κ estimated	3.9	137.1	288.9	0.0093	0.0624	0.149	-610.48	16
(5) F3×4, $\kappa = 1$ fixed	1.0	63.2	362.8	0.0084	0.0973	0.087	-560.76	16
(6) F3×4, κ estimated	5.4	60.6	365.4	0.0084	0.1061	0.079	-557.85	16
(7) F61, $\kappa = 1$ fixed	1.0	58.3	367.7	0.0082	0.1145	0.072	-501.39	16
(8) F61, κ estimated	5.3	55.3	370.7	0.0082	0.1237	0.066	-498.61	16

^aGenBank accession numbers are V00516 (human) and M12158 (orangutan).

^bFequal, equal codon frequencies (= 1/61) are assumed; F1×4, four nucleotide frequencies are used to calculate codon frequencies (3 free parameters); F3×4, nucleotide frequencies at three codon positions are used to calculate codon frequencies (9 free parameters); F61, all codon frequencies are used as free parameters (60 free parameters).

𝔄ℓ is the log-likelihood value.

Existen dos clases de métodos para estimar dN y dS entre dos secuencias de ADN que codifican proteínas. La primera clase fue desarrollada a principios de la década de 1980 (Nei and Gojobori 1986; Miyata and Yasunaga 1980; Muse 1996) e implica contar los sitios sinónimos (S) y no sinónimos (N) en las dos secuencias, contar las diferencias sinónimas y no sinónimas entre las dos secuencias y corregir las sustituciones múltiples en el mismo sitio. La mayoría de estos métodos hacen suposiciones simplistas sobre el proceso de sustitución de nucleótidos por lo que se definen como métodos aproximados. La segunda clase es el método de ML basado en modelos explícitos de sustitución de codones (Tabla 6 der.) (Yang and Nielsen 2000; Ina 1995; Goldman and Yang 1994; Yang and Nielsen 2000). Los parámetros del modelo (es decir, la divergencia de secuencia t, la tasa de transición/transversión y la relación dN/dS) se estiman a partir de los datos mediante ML y se utilizan para calcular dN y dS según sus definiciones (Tabla 7) (Nei and Gojobori 1986; Miyata and Yasunaga 1980; Muse 1996; Ina 1995; Goldman and Yang 1994; Nei and Gojobori 1986; Miyata and Yasunaga 1980; Muse 1996; Yang 2019). Una característica importante del método es que el modelo se formula a nivel de tasas instantáneas de evolución (donde no hay posibilidad de cambios múltiples).

Debido a que mediante las técnicas de análisis estructural y evolutivas que utilizamos en el capítulo que antecede, pudimos comprobar que *Trichoderma* es el mejor género y *harzianum* resulta la especie más interesante como agente de control biológico, nos propusimos ahora realizar el análisis del genoma de esta especie con el objetivo de detectar proteínas que evolucionan bajo patrones de selección positiva para revelar la naturaleza bioquímica de su capacidad para controlar diferentes plagas. Usamos un método recursivo para seleccionar diferentes conjuntos de proteínas ortólogas de OMA como base de datos de genes ortólogos, para diferentes especies relacionadas con ésta. Tratamos de maximizar de este modo el número de genes de *T. harzianum* y el número de secuencias homólogas en un mismo árbol filogenético. Para lograr este propósito, en este proceso utilizamos todos los genes anotados del genoma de *T. harzianum* (Grinyer et al. 2004).

Una vez reunidos él o los conjuntos de datos de genes de distintas especies cercanas a *T. harzianum* procedimos a alinear secuencialmente los genes de *T. harzianum* con los distintos conjuntos de ortólogos obtenidos. Para tal propósito utilizamos Tcoffee (Edgar 2004; Notredame et al. 2000) para realizar alineamientos de proteínas. Con los alineamientos de regiones codificantes, utilizaremos el programa PAML (Yang 2007) para estimar velocidades de evolución a nivel de codones. Utilizando estos programas, estimamos patrones de evolución de selección positiva tanto a nivel de clusters filogenéticos como a nivel de sitios. Utilizando métodos de máxima verosimilitud (segundo método descripto anteriormente para estimación de dN y dS) y asumiendo distribución de chi cuadrado podremos estimar la presencia de selección positiva estadísticamente significativa (Yang et al. 2005; Nielsen 2001).

Obtención de los datos a estudiar

En este apartado buscamos optimizar el número de especies y de genes para poder caracterizar el mayor número posible de secuencias del proteoma de *Trichoderma harzianum* para luego poder estudiar su evolución. Para ello, utilizando OMA, seleccionamos conjuntos de proteínas provenientes de distintos sets de microorganismos (Tabla 8). Utilizamos "1" como fracción mínima de especies cubiertas para que si o si haya una proteína ortóloga por especie e ilimitado número de genes, "-1", para obtener la máxima cantidad de conjuntos de proteínas ortólogas por subconjunto analizado.

Empleamos esta herramienta dado que permite bajar el número máximo de secuencias ortólogos uno a uno que se encuentren en las especies indicadas.

Seleccionamos organismos evolutivamente cercanos a *Trichoderma*, según pudimos ver en el apartado "Búsquedas por similitud secuencial para extender el número de proteínas biocontroladoras de referencia" del capítulo que antecede.

Set	Microorganismos seleccionados	Cantidad de ortólogos
1	Hypocrea atroviridis; Hypocrea jecorina; Hypocrea virens; Trichoderma harzianum	
2	Trichoderma harzianum; Stachybotrys chlorohalonata	5555
3	Beauveria bassiana; Trichoderma harzianum	5227
4	Cordyceps militaris; Trichoderma harzianum	5214
5	Trichoderma harzianum; Fusarium oxysporum	5172
6	Trichoderma harzianum; Fusarium oxysporum; Stachybotrys chlorohalonata	4026
7	Beauveria bassiana; Trichoderma harzianum; Fusarium oxysporum	3740
8	Beauveria bassiana; Cordyceps militaris; Hypocrea atroviridis; Hypocrea jecorina; Hypocrea virens; Trichoderma harzianum	3721
9	Beauveria bassiana; Cordyceps militaris; Hypocrea atroviridis; Hypocrea jecorina; Hypocrea virens; Trichoderma harzianum; Gibberella moniliformis; Fusarium oxysporum; Fusarium poae; Gibberella zeae; Nectarina haematococca; Stachybotrys chlorohalonata	1308

Tabla 8 Sets de ortólogos obtenidos de OMA.

Observamos que el set 8 tenía un gran número de proteínas ortólogas y sólo incluía microorganismos biocontroladores (tanto sobre hongos como sobre insectos), por tal motivo, se eligió este set para avanzar con el análisis. Es importante destacar que también buscamos tener divergencia secuencial (que no todos fueran especies o subespecies de OMA) ya que los resultados en organismos muy similares pueden dar errores en la estimación de la selección positiva.

Las relaciones evolutivas de estos microorganismos y de todos los que fueron analizados en los distintos sets se muestran en la figura 24.

Figura 24 Representación de las relaciones evolutivas de "biocontroladores fungicidas" y "biocontroladores insecticidas" realizado con OMA.

Preparación de los datos para la estimación de selección positiva

Según mencionamos en la sección anterior, identificamos al set 8 como el más interesante para avanzar con el análisis. Por tal motivo, descargamos de OMA los 3721 paquetes de 6 proteínas ortólogas (esto, dado que en cada set hay 1 proteína correspondiente de cada especie analizada), denominado "*marker_genes*" en el programa. Obtenidos los paquetes de proteínas, realizamos el alineamiento de proteínas contenidas en cada uno utilizando el servidor de alineamientos de secuencias múltiples T-Coffee. En paralelo, buscamos las secuencias codificantes para cada una de esas proteínas utilizando PAL2NAL, este programa toma las regiones codificantes y usando el alineamiento de proteínas, reemplaza el alineamiento poniendo la secuencia codificante y respetando los gaps.

Aplicación de modelos evolutivos para detectar selección positiva

Utilizando una proteína seleccionada al azar de los paquetes de ortólogos obtenidos en la sección anterior, obtuvimos un árbol filogenético de referencia para las 6 especies, utilizando el programa PhyML. La selección de la proteína es arbitraria y sólo buscamos obtener una representación filogenética de las especies para comparar las velocidades de todas las proteínas entre sí. El árbol filogenético obtenido se muestra en la figura 25.

Figura 25 Árbol filogenético pasa las especies utilizando una proteína seleccionada al azar del conjunto de ortólogos.

Sobre los alineamientos de regiones codificantes, utilizamos el programa PAML para estimar velocidades de evolución a nivel de codones. PAML es un paquete de programas para el análisis de secuencias de ADN o proteínas utilizando el máximo método de probabilidad en un marco filogenético. El paquete, junto con documentación y códigos fuente, está disponible en el sitio web de PAML (<u>http://abacus.gene.ucl.ac.uk/software/paml.html</u>). Utilizando este programa estimamos patrones de evolución de selección positiva a nivel de ramas filogenéticas encontrando 13 proteínas y a nivel de sitios (*n-sites*) hallando 115 proteínas (ver apéndice 3.2).

El test realizado a nivel ramas tiene como objetivo detectar la selección darwiniana a lo largo de ramas pre especificadas en un árbol que afecta sólo unos pocos codones en un gen codificante, con selección medida por la relación de tasas no sinónimas/sinónimas (ω = dN/dS) y selección positiva indicada por ω >1 (Yang and Nielsen 2002; Zhang et al. 2005). Centrándonos en residuos de aminoácidos individuales, se espera que la prueba sea más poderosa que las pruebas basadas en el modelo de ramas, que promedian sobre todos sitios en la proteína (Yang 1998; Zhang et al. 2005; Suzuki and Gojobori 1999). El test con el modelo de ramas fue realizado por (Yang and Nielsen 2002; Zhang et al. 2005), pero se encontró que generaba falsos positivos excesivos cuando sus suposiciones son violadas (Yang and Nielsen 2002; Zhang et al. 2005).

Resultados del análisis de selección positiva

En la sección anterior, mediante métodos que detectan selección positiva a nivel secuencial (por posición) y otros a nivel de todo el alineamiento, encontramos en total 128 proteínas con selección positiva. Con el UNIPROT ID, conocimos su identidad realizando una *ID mapping* y realizamos un curado de las mismas. Observamos que, al menos comparando nombres o ID, no hay solapamiento entre las proteínas encontradas entre los dos métodos. Asimismo, encontramos una gran variedad de proteínas con distintas actividades y funciones. El listado de proteínas encontradas se muestra en el apéndice 3.1.

Comparación de los conjuntos de proteínas biocontroladoras estimadas por los métodos aplicados en este capítulo y el anterior

En esta sección nos propusimos comparar las proteínas obtenidas en este capítulo con las proteínas del capítulo anterior. Al igual que hicimos en la sección inmediatamente anterior, primeramente, comenzamos mapeando las 128 proteínas obtenidas en este capítulo con las 652 que forman parte de nuestra base de datos "Biocontrol" y las homólogas que encontramos analizando los proteomas completos de biocontroladores y patógenos (ver sección "Búsquedas por similitud secuencial para extender el número de proteínas biocontroladoras de referencia" del capítulo 2). Observamos que, al menos comparando nombres o ID, no hay solapamiento entre las proteínas encontradas entre los dos métodos. Por tal motivo, decidimos utilizar criterios de similitud secuencial para enfrentar nuevamente los dos grupos de proteínas. El resultado de estas búsquedas de similitud secuencial resultó en 28 proteínas (Tabla 9) con buenos e-values (menores a 1.10⁻⁵) Si bien parecieran ser pocas las proteínas en común encontradas por ambos métodos, cabe destacar que la lista de genes con selección positiva fue tomada de un subconjunto de proteínas (que venían del set 8 de ortólogos de OMA) y no del proteoma total (14049 proteínas), lo que puede justificar el bajo número de proteínas en común entre los diferentes procedimientos.

	UNIPRO)T ID	
	Selección positiva	Bilbiografía	Proteína
	A0A0F9ZUD3	A0A098DW25	Chromosome 4, complete genome
	A0A0G0A5B5	A0A0F9X7F2	NACHT
	A0A0F9X8Z9	A0A0F9X8Z9	DNA-directed RNA polymerase III complex subunit Rpc37
	A0A0G0A045	A0A0G0A467	Sugar porter family MFS transporter
	A0A0F9XEN6	A0A167FM62	Kinesin-like protein
	A0A0F9X8L1	A0A2H2ZR08	WD_REPEATS_REGION
	A0A0F9X7F3	A0A2L2TJ38	Zn(2)-C6 fungal-type
	A0A0G0A9I1	A0A2P5A1Q4	STE/STE11/BCK1 protein kinase
	A0A0F9XAH1	A0A2T4ASQ6	Peptidase A1
	A0A0F9WVZ9	0A395MUR3	Peroxisomal biogenesis factor 6
	A0A0F9XPS8	A0A395ND29	chitin synthase (EC 2.4.1.16)
	A0A0F9XA85	A0A395NK38	S-(hydroxymethyl)glutathione dehydrogenase (EC 1.1.1.284)
	A0A0F9ZWB6	A0A395NLE8	Acetyl-coenzyme A synthetase (EC 6.2.1.1)
	A0A0F9X996	A0A395S5F7	Multidrug resistance fnx1
	A0A0F9WZB7	A0A395SBK4	ABC transporter ATP-binding protein ARB1
	A0A0F9XM80	A0A395SWS1	Dihydropteroate synthase
A0A0G0A2T0 A0A395T3Y7		A0A395T3Y7	26s proteasome regulatory subunit n10
	A0A0F9XC86	A0A397Z869	RRM
	A0A0F9XK99	0A3M2R8M0	ABC transporter

Tabla 9 Listado de proteínas involucradas en mecanismos de control biológico halladas tanto por bibliografía como por selección positiva.

A0A0F9ZQX2	A0A5N5DIN0	1,3-beta-glucanosyltransferase (EC 2.4.1)	
A0A0F9XGA1	A0A8H4K5F2	DNA repair RAD5	
A0A0F9X8H7	A0A8H4XJS9	WSC	
A0A0F9WXL4	A0A8H4XQP9	Amino acid permease	
A0A0F9Y1G9	A0A8H4XTP5	Translocation protein SEC63	
A0A0F9XF47	A0A8H5DGG0	Zn(2)-C6 fungal-type	
A0A0G0A277	A0A8H5SUU6	[RNA-polymerase]-subunit kinase (EC 2.7.11.23)	
A0A0F9WW29	C7YZA5	Major facilitator superfamily (MFS) profile	
A0A0F9X0H9	W9HH30	Zn(2)-C6 fungal-type	

Conclusiones

En el estudio de evolución molecular adaptativa de las proteínas *de Trichoderma harzianum*, hemos logrado encontrar 128 proteínas que evolucionaron bajo un patrón de selección positiva. Estas proteínas fueron tomadas de un subconjunto de ortólogos de OMA que, como mencionábamos, es una base de datos de genes de acceso público.

Es oportuno mencionar que ya comenzamos sabiendo que el diseño del análisis que planteamos en este capítulo es limitado en cuanto a la cantidad de proteínas. Esto se debe a que, en el intento de maximizar el número de especies estudiadas (ver tabla 8), resignamos tener mayor cantidad de proteínas, lejos de las más de ~14000 que tiene el proteoma de *Trichoderma*. Esta es una diferencia con el capítulo anterior en donde, además de obtener proteínas en la literatura con pruebas fehacientes experimentales de su participación en la capacidad biocontroladora, avanzamos en nuestro análisis con proteomas completos. Por lo tanto, no podemos saber si el método de selección positiva para identificar proteínas es más restringido o no porque no tenemos las mismas dimensiones de datos. Sin embargo, lo interesante de este análisis, es poder haber identificado 128 proteínas y que 100 de ellas se hayan detectado únicamente por selección positiva y no en la caracterización secuencial y evolutiva de proteínas que hicimos en el capítulo anterior, aun habiendo analizado varios proteomas completos de biocontroladores.

En el siguiente capítulo, tomamos como ejemplo una proteína obtenida por selección positiva para poder conocer su relación estructura-función para intentar asociar los cambios adaptativos a nuevos roles biológicos.

Capítulo 4: Caracterización estructural, evolutiva y secuencial de la proteína β-1,3-glucanosiltransferasa

Resumen

En los capítulos anteriores hemos conseguido agrupar y caracterizar una amplia lista de proteínas involucradas en mecanismos de control de patógenos, como así también estimar la presencia de adaptaciones funcionales utilizando métodos evolutivos. Los mismos detectan la presencia de un patrón de evolución particular denominado selección positiva que, como previamente mencionamos, refleja el hecho de que ciertas sustituciones no-sinónimas son más frecuentes que las sustituciones neutras. Los patrones de sustitución, realizados a nivel de determinadas ramas o a nivel de sitios específicos de la proteína arrojaron posibles proteínas candidatos a estar sujetas a un proceso de selección positiva. Entre dichos candidatos se encuentra la proteína β -1,3-glucanosiltransferasa de T. harzianum (ver Apéndice 3.1), que también fue detectada como homóloga a una proteína que forma parte de la base de datos "biocontrol" que generamos en el capítulo 2. Esta proteína interviene en la remodelación de la pared celular de hongos y se secreta en condiciones de crecimiento limitadas de carbono. Además, es una proteína clave en el metabolismo de glúcidos y se ha demostrado su rol en la patogenicidad del hongo patógeno. En este capítulo, caracterizamos dicha enzima utilizando distintos recursos bioinformáticos basados en información estructural, evolutiva y secuencial. El principal propósito de dicha caracterización es acumular evidencias sobre el posible impacto de la selección positiva sobre la relación estructura-función de la proteína para evaluar la factibilidad de ser reconocida como una posible adaptación funcional al rol biológico de T. harzianum.

Introducción

En los capítulos anteriores identificamos las proteínas de *Trichoderma* involucradas en mecanismos de control biológico y las analizamos en base a sus características secuenciales, identificando su actividad y comparándolas con homólogas de especies evolutivamente cercanas. Asimismo, realizamos un análisis evolutivo para poder identificar adaptaciones funcionales de éstas, focalizándonos en detectar la presencia de un patrón de evolución particular denominado selección positiva en el proteoma de *T. harzianum*. En este último análisis, encontramos a la proteína β-1,3-glucanosiltransferasa (UNIPROT ID A0A0F9ZQX2), que consideramos de interés por poseer 3 posiciones con selección positiva (Arg 52, Thr 54 e His 342). Es oportuno mencionar que una proteína homóloga a ésta (UNIPROT ID A0A5N5DIN0), también fue detectada en la búsqueda bibliográfica inicial que dio lugar a la base de datos "biocontrol" y a partir de la cual encontramos proteínas homólogas de especies evolutivamente cercana. En el capítulo 3, poníamos de manifiesto esta homología en la tabla 9, sin embargo, no será analizada en este capítulo por no haber sido detectada por selección positiva.

La A0A0F9ZQX2 está identificada por asignación de homología como perteneciente a la familia de las enzimas denominadas β -1,3-glucosiltransferasas o β -1,3-glucanosiltransferasas (Mouyna et al. 2000) Este último nombre lo reciben debido a que principalmente tienen como sustrato a los β -glucanos.

Los β -glucanos (Figura 26) son polisacáridos mayormente compuestos de cadenas de D-glucosa, que muestran enlaces β -1,3. Los mismos pueden tener cadenas con variadas longitudes y poseer además ramificaciones en posiciones β -1,6 (Bulmer et al. 2021).

Estos polisacáridos están estabilizados por una red de interacciones débiles, principalmente puentes de hidrógeno en forma intra o inter cadenas dando lugar a conformaciones helicoidales o formas carentes de estructura secundaria. En la mayoría de los hongos, los β -1,3-glucanos se unen covalentemente con la quitina formando una malla de fibras resistentes a la deformación, embebidas en una sustancia cementante soluble en álcalis (Latgé 2007) (ver figura 27).

Figura 27 Esquema representando la estructura de los polisacáridos en la pared celular de hongos. Figura tomada de (Latgé 2007) destacando sus fracciones solubles e insolubles (en soluciones alcalinas de NaOH 1N) y su composición principal.

Los polisacáridos β -1,3, cumplen funciones estructurales muy importantes en levadura, siendo uno de los principales constituyentes de la pared celular, llegando hasta un 40% de su masa seca (Kimura 2013) . Su interacción con la pared celular puede ser fuerte o débil (Bowman and Free 2006) y su función dependerá mayormente de su peso molecular, ubicación celular y estructura secundaria.

Las glicosiltransferasas son un grupo de enzimas que participan en la formación de enlaces glicosídicos y están ampliamente difundidas en todos los organismos estudiados hasta hoy (Tsukamoto and Takeuchi 2021). En particular, las glucanosiltransferasas tienen una extensa actividad en la síntesis y remodelación de los polisacáridos en levaduras y hongos (Lairson et al. 2008) pero están ausentes en animales y plantas. En particular las GTs que se ocupan de la síntesis de los 1,3-β-glucanos se denominan en general glucansintasas (Papaspyridi et al. 2018). Las GTs que utilizan azúcares activados con nucleótidos difosfatos (CMP, UDP, GDP o TDP) se denominan GTs tipo Leloir. Por el contrario, las GTs del tipo no-Leloir utilizan azúcares fosforilados o sustratos no activados como sacarosa (Weijers et al. 2008).

Como mencionamos, la A0A0F9ZQX2 es una proteína que pertenece a la familia de las β -1,3glucanosiltransferasas que cataliza la elongación lineal (no introduce ramificaciones 1,6) de los glucanos en la pared celular. Estas enzimas catalizan el corte de un enlace β -1,3-glicosídico de un β -1,3-glucano (de al menos 10 glucosas) y transfieren ese fragmento al extremo no reductor de otra cadena de β -1,3-glucanos (con al menos 5 glucosas) produciendo de esta forma su elongación. En general la β -1,3-glucanosiltransferasa actúa en forma sinérgica con la glucanosintasa. Así, se ha caracterizado a las β -1,3-glucanosiltransferasas como enzimas que participan en la biosíntesis, remodelación y morfogénesis de la pared celular de levaduras (Mouyna et al. 2013; Cabib and Arroyo 2013). Sin embargo, estas enzimas también han sido caracterizadas como determinantes de la virulencia de hongos en *Candida albicans* facilitando la adhesión e invasión (Galán-Ladero et al. 2010). De igual forma, esta asociación entre GTs que remodelan la membrana y su rol en la virulencia de la levadura ha sido demostrado para otras especies además de *C. albicans* como *A. fumigatus* (Mouyna et al. 2013), el entomopatógeno *B. bassiana* (Sun et al. 2011) y el fitopatógeno *F. oxysporum* (Caracuel et al. 2005). Debido a estas actividades en la remodelación de la pared celular se demostró para algunos hongos que sus β -1,3-glucanosiltransferasas eran vitales para la supervivencia del hongo (Gastebois et al. 2010). Las β -1,3-glucanosiltransferasas están asociadas a la membrana celular por un anclaje de tipo glicosil fosfatidil inositol (Figura 28) además de otros azúcares y lípidos como glucosamina, manosas y fosfatidiletanolamina, aunque su composición puede variar en el tránsito de la proteína a la membra (Paulick and Bertozzi 2008). El GPI se asocia cuando la proteína transita por el retículo endoplasmático. La reacción es catalizada por el complejo de la transaminasa que reconoce un sitio específico en la proteína (ω -site (Eisenhaber et al. 2004; Fankhauser and Mäser 2005). En una reacción de translocación, la proteína pierde un segmento de unos 20-30 residuos carboxilo terminales (principalmente hidrofóbicos) a cambio de recibir el GPI.

Figura 28 Disposición de proteínas ancladas con GPI a la pared celular. P1 y P2 representan β -1,3 y β -1,6-glucanosiltransferasas. Figura tomada de (Latgé 2007)

Finalmente, se encontró que en cultivos de *T. harzianum* en condiciones limitantes de carbono, el hongo secreta distintas enzimas que pueden catalizar la hidrólisis de nitrofenol- β -D-glucosa (Tesis doctoral L. Gelain, Mathematical Modelling of Cellulase Production and Continuous Production of Enzymes under Carbon-Limited Conditions by *Trichoderma harzianum* P49P11, (2020), https://doi.org/10.4233/uuid:cf88). Para extender estos resultados y caracterizar las proteínas secretadas por *T. harzianum*, en un estudio reciente se caracterizaron entre otras enzimas, la presencia de 5 β -1,3-glucanosiltransferasas. El mecanismo por el cual la proteína se secreta desprendiéndose de la membrana y anclaje GPI aún se desconoce.

Caracterización secuencial de la β-1,3-glucanosiltransferasa (A0A0F9ZQX2) de *T. harzianum*

En esta sección caracterizamos a la A0A0F9ZQX2 utilizando una gran variedad de técnicas computacionales, en algunos casos guiadas por el previo conocimiento de las propiedades generales de las proteínas que componen esta familia de GTs.

Primeramente, la A0A0F9ZQX2 es una enzima que pertenece a la familia de las glucanosiltransferasas según la base de datos Interpro (Blum et al. 2021) (ID: IPR004886). En esta familia se encuentran ~6000 proteínas caracterizadas por su similitud secuencial y mayormente por poseer los aminoácidos responsables de la actividad catalítica para degradar, sintetizar y/o remodelar la pared celular de levaduras y hongos (Mouyna et al. 2000). Utilizando las secuencias derivadas de Interpro encontramos que existen 5 proteínas distintas provenientes del proteoma de referencia UP000034112 de *T. harzianum* (código de organismo 5544) (Tabla 10).

Tabla 10 Proteínas de *T. harzianum* encontradas en el proteoma de referencia según Interpro.

UNIPROT ID	Nombre UNIPROT	Nombre Proteína	Nombre Gen	Longitud
A0A0F9ZKA8	A0A0F9ZKA8_TRIHA	1,3-beta- glucanosyltransfer ase (EC 2.4.1)	THAR02_07194	522
A0A0F9ZQX2	A0A0F9ZQX2_TRIHA	1,3-beta- glucanosyltransfer ase (EC 2.4.1)	THAR02_05189	471
A0A0F9ZUH3	A0A0F9ZUH3_TRIHA	1,3-beta- glucanosyltransfer ase (EC 2.4.1)	THAR02_04021	486
A0A0F9ZZN6	A0A0F9ZZN6_TRIHA	1,3-beta- glucanosyltransfer ase (EC 2.4.1)	THAR02_09247	541
A0A0G0A377	A0A0G0A377_TRIHA	1,3-beta- glucanosyltransfer ase (EC 2.4.1)	THAR02_01079	457

Al alinear estas 5 proteínas parálogas, utilizando el programa Clustal y el visualizador Genedoc, encontramos que la proteína A0A0F9ZQX2 es secuencialmente distante al resto (Figura 29).

Figura 29 Comparación de la proteína A0A0F9ZQX2 con proteínas parálogas cercanas extraídas de Interpro. Los porcentajes de similitud de A0A0F9ZQX2 al resto de las parálogas rondan el 24% de identidad y ~40% de similitud derivada de BLOSUM62.

Para lograr una caracterización global de la posible organización estructural/funcional de la A0A0F9ZQX2 utilizamos distintas herramientas bioinformáticas. Utilizando el predictor SignalP - 5.0 (Vakili et al. 2021) encontramos que la proteína tiene un péptido señal en sus primeros 19 aminoácidos (Figura 30). Utilizamos el servidor TMHMM (Krogh et al. 2001) para predecir la presencia de posibles regiones transmembrana, con lo que encontramos que los últimos 20 aminoácidos son altamente hidrofóbicos. La presencia de una región hidrofóbica carboxilo terminal junto a la evidencia experimental de un anclaje GPI nos sugirió fuertemente la presencia de determinantes secuenciales para la presencia de dicho anclaje en membrana. Por tal motivo, estimamos la presencia de sitios denominados omega utilizando los servidores NetGPI (Gíslason et al. 2021) y PredGPI (Pierleoni et al. 2008) los cuales detectaron la presencia de un sitios "omega" en la posición 446 (Gly) y 445 (Ser). Esta predicción junto con la presencia de un péptido señal y el segmento hidrofóbico carboxilo terminal hacen muy probable que la A0A0F9ZQX2 tenga un anclaje a membrana del tipo GPI (ver figura 28).

Para caracterizar aún más la organización estructural de la proteína utilizamos los predictores IUPred (Dosztányi 2018) y MobiDB (Piovesan et al. 2018) para predecir la presencia de regiones desestructuradas en la proteína. Estas predicciones arrojaron que la proteína contiene una extensa región desordenada en su extremo carboxilo terminal. Utilizando la región de la proteína que no es desordenada y descartando el péptido señal, realizamos búsquedas de similitud secuencial utilizando BLAST en el sitio NCBI. Estos resultados confirmaron la pertenencia de la A0A0F9ZQX2 a la familia de las β -1,3-glucanosiltransferasas. Muchas de las proteínas en esta familia están anotadas como pertenecientes a la familia *Glycosyl Transferase 72* (EC: 2.4.1.-) según la base de datos CAZY, base

de datos que se encarga de anotar y sistematizar el estudio de estructuras, plegamientos, dominios y/o motivos que estén relacionados con la formación o modificación de enlaces glicosídicos (Drula et al. 2022). De esta forma, anotamos la región no desordenada de la A0A0F9ZQX2 como perteneciente a esta familia GH72 según CAZY. Dicha anotación fue comprobada adicionalmente por búsquedas de similitud secuencial en la base de datos PFam (Mistry et al. 2021). Con estos procedimientos logramos obtener una representación de la posible organización estructural/funcional de la A0A0F9ZQX2 (ver figura 30). Finalmente, como encontramos en el capítulo anterior, la A0A0F9ZQX2 tiene 3 posiciones que muestran un patrón de selección positiva. La figura 28 muestra las posiciones respectivas (Arg 52, Thr 54 e His 342).

> MRWSSAAIALASAKSFVVA DQCERDAKLMTELGTNTIRVYHVDPSADHDGCMKAFDDAGIYVLADLDTFDTYIIPENNY WNKTKFERYAEVLDTFQKYDNLLGVFVGNENIATKDDSPTAPYLKAAARDMKAYRDAQGY RDIPIGYSAADILQLRPMLQDYLTCGGNSSETVDFFSLNSYSWCDPSTYTESTYDQLELY AKNFPVPIFLSETGCIVPGPRAWDDQDAIFGPQMVNDWSGAIIYEWIQEENSYGIITYAP AGQPAGPDVEGGFLRKGTPTFKQPDFSALKSKWATNTPTGV<mark>H</mark>KSDYNPSKVSTRACPTST AGGWWQVNGDVDLPTLGQILAVNTKTHSAEVATETETATETVVSVTASDGAVVATTMAIT

<mark>Péptido señal;</mark> Módulo catalítico GH72; Posiciones con selección positiva; Región desordenada; Sitios omega para la unión covalente del GPI;Región transmembrana

Figura 30 Según las predicciones computacionales, la A0A0F9ZQX2 contiene un módulo catalítico para sostener la reacción de la β-1,3-glucanosiltransferasas anotado en CAZY como GH72 (verde). Hacia el extremo carboxilo terminal encontramos una extensa región desordenada (amarillo) que termina en una región hidrofóbica (celeste) en principio necesaria para el anclaje GPI. Finalmente se predijo también dos sitios omega para la unión covalente del GPI (rojo) además de un péptido señal (verde fuerte).

Caracterización estructural

Para la caracterización estructural de A0A0F9ZQX2 utilizamos la herramienta predictiva AlphaFold2 (Jumper et al. 2021) implementada en ColabFold (Mirdita et al. 2022). Es importante destacar que AlphaFold2 representa un cambio trascendental en cuanto a la predicción de modelos estructurales de proteínas, que en la mayoría de los casos puede producir modelos con calidad cristalográfica (Tunyasuvunakool et al. 2021; Jumper et al. 2021). Las opciones de la corrida en ColabFold fueron las pre-establecidas, sin utilizar moldes y utilizando la optimización por Amber. El programa informa los 5 mejores modelos que mostraron en promedio una calidad excelente como se puede derivar de la figura 29. El pIDDT, es el *score* de calidad por posición que asigna el AlphaFold2 y que es proporcional a la calidad del modelado (Mariani et al. 2013). Este *score* toma valores entre 0 y 100, donde 100 implica una calidad óptima. En general, valores de pIDDTs mayores que 70 (en promedio para toda la cadena) implican modelos correctos desde el punto de vista del recorrido de la cadena carbonada y scores mayores que 90 implican calidad cristalográfica (indistinguible de realizar una determinación estructural por cristalografía y difracción de RX) (Tunyasuvunakool et al. 2021). Bajos *scores* de pIDDT se han asociado con la presencia de desorden o regiones altamente flexibles, siendo estos la mejor forma de evaluar la presencia de desorden (Jumper et al. 2021; Ruff and Pappu 2021).

En general se toma como límite un valor de pIDDT < 68 como predictivo de desorden (pIDDT< 68.8 comunicación personal (Piovesan et al. 2022)). De esta forma vemos en la figura 31 que, como habíamos anticipado anteriormente, la región carboxilo terminal es desordenada (por Alphafold2 a partir de posición ~370). La región aminoterminal desordenada corresponde al péptido señal y dos regiones cortas de alta flexibilidad que comprenden las posiciones 41-46 y 109-110. El resto de las posiciones tienen en promedio un pIDDT = 97.99, mostrando una excelente calidad.

Figura 31 valores predichos de pIDDT, *score* que mide la calidad de la predicción hecha por AlphaFold2, por posición. Se observa la alta calidad de los modelos y las regiones desordenadas hacia el carboxilo terminal previamente predichas por lupred y MobiDB.

El modelo estructural (Figura 32) muestra un plegamiento tipo TIM barrel en acuerdo con lo caracterizado para las proteínas con estructura conocida y pertenecientes a la familia CH72 de la base de datos de CAZY. Según esta base de datos este dominio se denomina CBM43.

Figura 32 Modelo estructural predicho por el programa AlphaFold2 para la proteína A0A0F9ZQX2. Notar el extremo carboxilo terminal desordenado de la proteína

Para extraer más información de nuestro modelo estructural, exploramos distintas bases de datos en busca de proteínas de la familia CH72 que tuvieran estructura conocida. De esta forma utilizamos PFam e Interpro, y la herramienta de asignación de plegamiento HHpred (Lobley et al. 2009). Los resultados obtenidos mostraron las proteínas con estructuras PDB 509q (ScGas2 de *Saccharomyces cerevisiae* S288C con varios inhibidores y azúcares co-cristalizados), 2w61(Gas2p, *Saccharomyces cerevisiae* Gas2p apo forma) y 5fih (Gas2p de *Saccharomyces cerevisiae* S288C en complejo con laminaritetraosa y laminaripentaosa). En particular, la estructura 509q es una β -1,3-glucanosiltransferasa de *Saccharomyces cerevisiae* (UNIPROT ID Q06135). En la figura 33 mostramos a dicha enzima co-cristalizada con un oligosacárido de β -1,3-glucosas. Estas glucosas se encuentran en un pocket o hendidura en la superficie de la proteína.

Figura 33 Estructura de la 509q representando su superficie en rojo. Se puede ver que en representación de sticks (en amarillo) la enzima se co-cristalizó con una serie de glucosas unidas en enlace β -1,3. El sitio de unión de la enzima se encuentra en una hendidura expuesta al solvente (Delso et al. 2018)

Recientemente se ha descrito que el sitio de unión a los oligosacáridos de glucosas se estabiliza por una serie de residuos aromáticos (Tyr 244, 307, 107 y 316 según numeración de la PDB). Además, se describe la participación de dos Glu (176 y 275) que cumplirían una actividad catalítica (Delso et al. 2018). Cuando alineamos estructuralmente el modelo obtenido por AlphaFold2 de la proteína A0A0F9ZQX2 con la estructura 509q de la β -1,3-glucanosiltransferasa de *Saccharomyces cerevisiae*, encontramos que dichos aminoácidos se encontraban 100 por ciento conservados (Figura 34). Esto indicaría la posibilidad de la conservación funcional de la proteína de *T. harzianum*.

Si bien las dos proteínas muestran una alta divergencia (~25% de identidad secuencial), éstas parecen mostrar una organización estructural similar. De hecho, la región carboxilo terminal de ambas parece desordenada (o altamente flexible) como se muestra en las figura 30 y figura 32 para la A0A0F9ZQX2. Incluso, para la 509q la estructura cristalina no contiene los últimos ~60 aminoácidos dando a entender que corresponden a regiones de *missing residues* (lo mismo pasa en otras 5 estructuras de la misma proteína (5090, 509P, 509R, 509Y, 50A2, 50A6). Más aún, la región carboxilo terminal que en A0A0F9ZQX2 constituye una región hidrofóbica (posiblemente transmembrana) parece estar conservada formando a su vez una región hidrofóbica en la proteína de *Saccharomyces cerevisiae*, según la predicción hecha con el servidor TMHMM.

Sin embargo, la β -1,3-glucanosiltransferasa de *Saccharomyces cerevisiae* (UNIPROT ID Q06135) posee un dominio extra que no se encuentra en la proteína de *T. harzianum*. Este dominio es rico en Cys. De hecho, las β -1,3-glucanosiltransferasas se clasifican en dos grandes grupos dependiendo de la presencia de ese dominio rico en Cys, el grupo GH72+ y GH72-, para los que tienen el dominio y los que no, respectivamente (Ragni et al. 2007).

Figura 34 Alineamiento secuencial derivado del alineamiento estructural entre el modelo estructural de la proteína A0A0F9ZQX2 y la estructura 509q. Los puntos rojos indican los aminoácidos aromáticos y los verdes los glutámicos en el sitio unión de la 509q conservados secuencialmente y estructuralmente entre las dos proteínas.

Posible rol de las posiciones con selección positiva

De las 3 posiciones detectadas evolucionando con una selección positiva (Arg 52, Thr 54 e His 342), hemos encontrado una posible explicación para dos de las mismas, la Arg 52 y la Thr 54, mientras que no pudimos interpretar la posición de la His 342 por encontrarse en una región desordenada.

Tomando como modelo la proteína homóloga β -1,3-glucanosiltransferasa de *Saccharomyces cerevisiae*, se ha descrito que las alfa hélices 1 y 2 de la estructura correspondiente 509q, están conectadas por un puente disulfuro entre las cisteínas 89 y 118. Dado que el loop que conecta estas hélices es muy flexible y se encuentra desordenado y como forma parte de una de las paredes de acceso al sitio activo, se especuló que el puente disulfuro mantiene la estructura y da una cierta rigidez a esta parte de la proteína (Hurtado-Guerrero et al. 2009) (Figura 35).

Como mostramos en la figura 35, utilizando el modelo estructural de A0A0F9ZQX2 obtenido por AlphaFold2, el loop altamente flexible y desordenado de la 5o9q, es más corto (4 aminoácidos más corto) y contiene a la Arg y Thr 52 y 54 (ver figura 34 aminoácidos en magenta). Estos aminoácidos interaccionan con el Glu y His 63 y 65 en un loop cercano (ver figura 36 aminoácidos en rojo). Como mencionámos anteriormente, estos loops forman la pared de sitio activo en la proteína de *S. cerevisiae*, y se especula que la presencia del puente disulfuro sirve para aumentar la rigidez de esta pared del sitio activo. El mismo puente disulfuro se encuentra conservado en A0A0F9ZQX2. A la presencia de este puente disulfuro observamos que además el loop es más corto y 2 residuos de este loop interaccionan con otro loop vecino. Nuestra hipótesis es que esta región del sitio activo en *T. harzianum* (ver figura 37), se vio sometida a una fuerza selectiva para disminuir la flexibilidad de loop (desordenado en 509q), haciéndolo más corto y disminuyendo su flexibilidad por la presencia de aminoácidos que forman nuevos enlaces con otra parte de la proteína. Quizás estos cambios estructurales indiquen posibles adaptaciones funcionales en *T. harzianum* respecto de *S. cerevisiae*.

Figura 35 Las flechas indican en la estructura 590q un loop desordenado que conecta las alfa hélices 1 y 2. En enlace disulfúro entre las Cys 89 y 118 (en amarillo hacia el fondo) restringiría el movimiento de los aminoácidos que forman el sitio activo (indicados en azul) mientras que el ligando se encuentra representado en rojo (Hurtado-Guerrero et al. 2009).

Figura 36 Modelo estructural de la proteína A0A0F9ZQX2. Se destacan en magenta la Arg 52 y Thr 54 que evolucionan bajo un régimen de selección positiva. Las mismas forman un loop altamente flexible y más corto que en su homóloga de *Saccharomyces cerevisiae*. Estos aminoácidos se encuentran haciendo contacto con el Glu e His (63 y 65 respectivamente) ubicados en otro loop cercano.

Figura 37 Superficie del modelo estructural de la proteína A0A0F9ZQX2. Se copiaron las coordenadas del sustrato de la estructura 509q para mostrar su ubicación equivalente en la proteína de *T. harzianum*. La superficie está coloreada por las propiedades fisicoquímicas de los átomos. Además, en azul se ve la superficie formada por las Tyr conservadas detalladas en el texto. Finalmente, destacamos en celeste la región de la proteína que forma parte de la pared del sitio aceptor de la cadena β -1,3-glucano y que, según nuestra hipótesis, se habría rigidizado en el curso de un proceso de evolución adaptativa. En magenta se indican los aminoácidos con selección positiva.

Conclusiones

Si bien es importante adquirir conocimiento previo sobre las propiedades generales de las proteínas, aquí demostramos que es posible caracterizarlas secuencial y estructuralmente utilizando una gran variedad de técnicas computacionales.

En particular, hemos podido analizar el modelo proteico de la β -1,3-glucanosiltransferasa, identificando las posiciones conservadas y aquellas que pudieran estar involucradas en adaptaciones funcionales. Comprobamos que AlphaFold2 resulta de gran utilidad para evaluar la estructura molecular de nuestra proteína, habiendo encontrado previamente la proteína β -1,3-glucanosiltransferasa (PDB=509q) de *Saccharomyces cerevisiae*.

Mediante el análisis comparativo de esta última y la estructura correspondiente de β -1,3glucanosiltransferasa de *T. harzianum*, pudimos verificar que se encuentran conservados los aminoácidos aromáticos que estabilizan el sitio de unión a los oligosacáridos de glucosas y el puente disulfuro que proveería rigidez de la pared del sitio activo. Por el contrario, encontramos que evolutivamente parecen haber surgido 2 aminoácidos que se encuentran en un loop del sitio activo, haciéndolo más corto, por lo que inferimos que podrian estar restringiendo también la movilidad de la pared que forma parte del sitio activo aceptor de la proteína. Podemos pensar que esa reducción de movilidad haga que la proteína sea más específica o aumente la constante de unión al sustrato, hecho que podríamos comprobar en trabajos futuros con dinámicas moleculares y comprobaciones experimentales. Sin embargo, es interesante destacar que pudimos evaluar la hipótesis mecanística explicada en la estructura de la proteína.

Por lo antes expuesto, podemos decir que en este capítulo hemos comprobado que la selección positiva resulta una herramienta muy útil en la identificación de proteínas que hayan sufrido adaptaciones funcionales y puedan explicar el rol biológico de *T. harzianum*.

Capítulo 5: Conclusiones generales y perspectivas

En el sector agropecuario argentino, existen cada vez más empresas que investigan, desarrollan y comercializan productos de origen biológico. Estos productos pueden utilizarse tanto para nutrir las plantas, como para protegerlas de agentes externos que puedan dañar su desarrollo. Bajo esta última acción, pueden encontrarse los controladores biológicos que son mayormente producidos en base a hongos o bacterias. En general, las empresas basan sus estudios en microbiología convencional, siendo el estudio de los componentes del caldo de cultivo, la necesidad de aditivos, estabilizantes y conservantes en el producto final, la estabilidad en distintas condiciones, el estado fisiológico de microorganismos, el recuento de Unidades Formadoras de Colonias y el porcentaje de plantas noduladas los tests más usuales para fertilizantes biológicos y, sumado a éstos, la evaluación de microorganismos antagonistas realizando pruebas *in vitro* por contacto entre organismos candidatos y patógenos, los experimentos habituales en el desarrollo de biocontroladores. Si bien actualmente se están incorporando análisis de biología molecular, tal como la identificación de cepas por medio de la metodología PCR, no hay mayor desarrollo que este por lo que, en mi opinión, una mejor comprensión de los mecanismos moleculares que caracterizan la capacidad nutritiva o terapéutica de microorganismos resulta interesante y hasta necesaria.

En un contexto de producción agropecuaria cada vez más exigente, la conjunción entre lo que hasta hoy se conoce y nuestro análisis bioinformático resulta un campo prometedor para aumentar el entendimiento sobre mecanismos de biocontrol. En el trabajo presentado, proponemos un enfoque que se muestra como un complemento que puede potenciar el *modus operandi* actual y constituye las bases de una nueva metodología de estudio en la próxima generación de productos biológicos.

Nuestros resultados demuestran la relevancia de considerar estas técnicas al estudiar microorganismos, y, por lo tanto, la posibilidad de desarrollar mejores biocontroladores. Consideramos muy importante destacar que hemos realizado este análisis en base a información ya existente y pública por lo que, más allá del conocimiento, este abordaje no implicaría una gran inversión inicial que pueda ser difícil de afrontar para las empresas del ámbito. Más aún, este reconocimiento resulta muy valioso en el ahorro de recursos, dado que permite reducir los posibles microorganismos candidatos para tal fin.

En el contexto particular del microorganismo analizado, pudimos comprobar que *Trichoderma harzianum* es la especie más interesante como agente de control biológico, comparándolo con multitud de hongos evolutivamente cercanos. Asimismo, pudimos identificar una gran cantidad de proteínas relacionadas con mecanismos de biocontrol. En la misma línea, hemos encontrado un parámetro, la velocidad de evolución, que puede ser utilizada en forma extensiva para caracterizar nuevas proteínas con posibles roles asociados a esta función. Estos análisis evolutivos nos permitieron hallar la proteína β -1,3-glucanosiltransferasa y caracterizarla computacionalmente, para comprender en mayor profundidad su mecanismo de acción en *Trichoderma*. Este análisis realizado, puede tomarse como guía para otras proteínas que resulten de interés.

Es relevante mencionar que, a pesar de la potencia del análisis de los métodos bioinformáticos, la detección de posibles candidatos biocontroladores y la caracterización de sus proteínas involucradas en tales procesos, dicho análisis resulta de carácter predictivo. Por lo tanto, hacemos un llamado de atención para fomentar en ámbitos de trabajo agronómicos la integración de estos métodos con

metodologías de validación empíricas en pos de conseguir los mejores resultados que ambos enfoques pueden ofrecer en la investigación científica.

Durante el proceso de ejecución de esta tesis, experimenté grandes dificultades dado que no se encuentra mucha información acerca del rol biocontrolador de *Trichoderma* y las proteínas involucradas. Es por esto que, considero oportuno poder generar una base de datos pública a partir de nuestros resultados para facilitar el acceso e incrementar el saber común.

Finalmente, es destacable mencionar que esta evaluación es extrapolable, no solo a otros microorganismos (virus y bacterias), sino también a otras propiedades que se pretendan obtener de ellos. Consideramos que este análisis bioinformático podría representar una nueva línea de investigación en el agro para incrementar la capacidad predictiva en la búsqueda de los mejores candidatos biocontroladores en general.

Bibliografía

- Abbey JA, Percival D, Abbey, Lord, Asiedu SK, Prithiviraj B, Schilder A. 2019. Biofungicides as alternative to synthetic fungicide control of grey mould (*Botrytis cinerea*) prospects and challenges. *Biocontrol Sci Technol* **29**: 207–228.
- Abo-Elnaga HIG. 2012. Biological Control of Damping Off and Root Rot of Wheat and Sugar Beet with Trichoderma harzianum. *Plant Pathol J (Faisalabad)* **11**: 25–31.
- Acosta-Suárez M, Pichardo T, Roque B, Cruz-Martín M, Para * Correspondencia Autora. 2013. Antagonismo in vitro de Trichoderma harzianum Rifai contra Mycosphaerella fijiensis Morelet / In vitro antagonism of Trichoderma harzianum Rifai against Mycosphaerella fijiensis Morelet.
- Adams DJ. 2004. Fungal cell wall chitinases and glucanases. *Microbiology (Reading, Engl)* **150**: 2029–2035.
- Arora DK, ed. 2003. Fungal biotechnology in agricultural, food, and environmental applications. CRC Press.
- Baker KF. 1987. Evolving concepts of biological control of plant pathogens. *Annu Rev Phytopathol* **25**: 67–85.
- Bazghaleh N, Prashar P, Woo S, Vandenberg A. 2020. Effects of lentil genotype on the colonization of beneficial trichoderma species and biocontrol of aphanomyces root rot. *Microorganisms* **8**.
- Behura SK, Severson DW. 2013. Codon usage bias: causative factors, quantification methods and genome-wide patterns: with emphasis on insect genomes. *Biol Rev Camb Philos Soc* **88**: 49–61.
- Benítez T, Rincón AM, Limón MC, Codón AC. 2004. Biocontrol mechanisms of Trichoderma strains. *Int Microbiol* **7**: 249–260.
- Błaszczyk L, Popiel D, Chełkowski J, Koczyk G, Samuels GJ, Sobieralski K, Siwulski M. 2011. Species diversity of Trichoderma in Poland. *J Appl Genet* **52**: 233–243.
- Bloom JD, Drummond DA, Arnold FH, Wilke CO. 2006. Structural determinants of the rate of protein evolution in yeast. *Mol Biol Evol* 23: 1751–1761.
- Blum M, Chang H-Y, Chuguransky S, Grego T, Kandasaamy S, Mitchell A, Nuka G, Paysan-Lafosse T, Qureshi M, Raj S, et al. 2021. The InterPro protein families and domains database: 20 years on. *Nucleic Acids Res* **49**: D344–D354.
- Bowman SM, Free SJ. 2006. The structure and synthesis of the fungal cell wall. *Bioessays* 28: 799–808.
- Brown CJ, Takayama S, Campen AM, Vise P, Marshall TW, Oldfield CJ, Williams CJ, Dunker AK. 2002. Evolutionary rate heterogeneity in proteins with long disordered regions. *J Mol Evol* **55**: 104–110.
- Bulmer GS, de Andrade P, Field RA, van Munster JM. 2021. Recent advances in enzymatic synthesis of β-glucan and cellulose. *Carbohydr Res* **508**: 108411.
- Cabib E, Arroyo J. 2013. How carbohydrates sculpt cells: chemical control of morphogenesis in the yeast cell wall. *Nat Rev Microbiol* **11**: 648–655.
- Caracuel Z, Martínez-Rocha AL, Di Pietro A, Madrid MP, Roncero MIG. 2005. Fusarium oxysporum gas1 encodes a putative beta-1,3-glucanosyltransferase required for virulence on tomato plants.

Mol Plant Microbe Interact 18: 1140–1147.

- Carillo P, Woo SL, Comite E, El-Nakhel C, Rouphael Y, Fusco GM, Borzacchiello A, Lanzuise S, Vinale F. 2020. Application of Trichoderma harzianum, 6-pentyl-α-pyrone and Plant Biopolymer Formulations Modulate Plant Metabolism and Fruit Quality of Plum Tomatoes. *Plants* **9**.
- Carreras-Villaseñor N, Sánchez-Arreguín JA, Herrera-Estrella AH. 2012. Trichoderma: sensing the environment for survival and dispersal. *Microbiology (Reading, Engl)* **158**: 3–16.
- Castagnoli E, Marik T, Mikkola R, Kredics L, Andersson MA, Salonen H, Kurnitski J. 2018. Indoor Trichoderma strains emitting peptaibols in guttation droplets. *J Appl Microbiol* **125**: 1408–1422.
- Chaverri P, Branco-Rocha F, Jaklitsch W, Gazis R, Degenkolb T, Samuels GJ. 2015. Systematics of the Trichoderma harzianum species complex and the re-identification of commercial biocontrol strains. *Mycologia* **107**: 558–590.
- Cherry JL. 2010. Expression level, evolutionary rate, and the cost of expression. *Genome Biol Evol* **2**: 757–769.
- Cohen-Kupiec R, Chet I. 1998. The molecular biology of chitin digestion. *Curr Opin Biotechnol* **9**: 270–277.
- Contreras-Cornejo HA, Macías-Rodríguez L, del-Val E, Larsen J. 2016. Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. *FEMS Microbiol Ecol* **92**: fiw036.
- Cook RJ. 1985. Biological control of plant pathogens: theory to application. Phytopathology 75: 25.
- Coppola M, Diretto G, Digilio MC, Woo SL, Giuliano G, Molisso D, Pennacchio F, Lorito M, Rao R. 2019. Transcriptome and Metabolome Reprogramming in Tomato Plants by Trichoderma harzianum strain T22 Primes and Enhances Defense Responses Against Aphids. *Front Physiol* **10**: 745.
- Costa AS. 1980. Tristeza control by cross protection. Plant Dis 64: 538.
- Daniel JF de S, Filho ER. 2007. Peptaibols of trichoderma. Nat Prod Rep 24: 1128–1141.
- Dasmeh P, Serohijos AWR, Kepp KP, Shakhnovich EI. 2013. Positively selected sites in cetacean myoglobins contribute to protein stability. *PLoS Comput Biol* **9**: e1002929.
- De Galich MTV. 1997. Fusarium head blight in Argentina.
- De Palma M, Salzano M, Villano C, Aversano R, Lorito M, Ruocco M, Docimo T, Piccinelli AL, D'Agostino N, Tucci M. 2019. Transcriptome reprogramming, epigenetic modifications and alternative splicing orchestrate the tomato root response to the beneficial fungus Trichoderma harzianum. *Hortic Res* **6**: 5.
- DeBach P. 1964. Biological Control of Insect Pests and Weeds. In *Biological Control of Insect Pests* and Weeds, p. 844, Cambridge University Press, Cambridge, UK.
- Degenkolb T, Fog Nielsen K, Dieckmann R, Branco-Rocha F, Chaverri P, Samuels GJ, Thrane U, von Döhren H, Vilcinskas A, Brückner H. 2015. Peptaibol, secondary-metabolite, and hydrophobin pattern of commercial biocontrol agents formulated with species of the Trichoderma harzianum complex. *Chem Biodivers* 12: 662–684.
- Degenkolb T, von Döhren H, Nielsen KF, Samuels GJ, Brückner H. 2008. Recent advances and future prospects in peptaibiotics, hydrophobin, and mycotoxin research, and their importance for chemotaxonomy of Trichoderma and Hypocrea. *Chem Biodivers* **5**: 671–680.

- Delso I, Valero-Gonzalez J, Gomollón-Bel F, Castro-López J, Fang W, Navratilova I, van Aalten DMF, Tejero T, Merino P, Hurtado-Guerrero R. 2018. Inhibitors against Fungal Cell Wall Remodeling Enzymes. *ChemMedChem* **13**: 128–132.
- Dendouga W, Boureghda H, Belhamra M. 2016. Biocontrol of Wheat *Fusarium* Crown and Root Rot by *Trichoderma* spp. and Evaluation of Their Cell Wall Degrading Enzymes Activities. *Acta phytopathologica et entomologica Hungarica* **51**: 1–12.
- Desalle R. 2000. Adaptive Evolution of Genes and Genomes. Austin L. Hughes. Oxford University Press, New York. 1999. Pp. 270. Price £45.00, hardback. ISBN 0 19 511626 7. *Heredity* **85**: 303–303.
- Di Rocco F, Parisi G, Zambelli A, Vida-Rioja L. 2006. Rapid evolution of cytochrome c oxidase subunit II in camelids (Tylopoda, Camelidae). *J Bioenerg Biomembr* **38**: 293–297.
- Díaz CG. 2013. Importancia, toxicogénesis y agresividad de especies pertenecientes a Gibberella fujikuroi en maíz en el Noroeste Argentino.
- Dixit P, Mukherjee PK, Sherkhane PD, Kale SP, Eapen S. 2011. Enhanced tolerance and remediation of anthracene by transgenic tobacco plants expressing a fungal glutathione transferase gene. *J Hazard Mater* **192**: 270–276.
- Dosztányi Z. 2018. Prediction of protein disorder based on IUPred. Protein Sci 27: 331–340.
- Dou K, Gao J, Zhang C, Yang H, Jiang X, Li J, Li Y, Wang W, Xian H, Li S, et al. 2019. Trichoderma biodiversity in major ecological systems of China. *J Microbiol* **57**: 668–675.
- Drula E, Garron M-L, Dogan S, Lombard V, Henrissat B, Terrapon N. 2022. The carbohydrate-active enzyme database: functions and literature. *Nucleic Acids Res* **50**: D571–D577.
- Drummond DA, Bloom JD, Adami C, Wilke CO, Arnold FH. 2005. Why highly expressed proteins evolve slowly. *Proc Natl Acad Sci USA* **102**: 14338–14343.
- Druzhinina IS, Kopchinskiy AG, Kubicek CP. 2006. The first 100 Trichoderma species characterized by molecular data. *Mycoscience* **47**: 55–64.
- Duo-Chuan L. 2006. Review of fungal chitinases. Mycopathologia 161: 345-360.
- Eastburn D, Butler E. 1988. Microhabitat characterization of Trichoderma harzianum in natural soil: Evaluation of factors affecting distribution. *Soil Biology and Biochemistry* **20**: 547–553.
- Eastburn DM, Butler EE. 1991. Effects of Soil Moisture and Temperature on the Saprophytic Ability of Trichoderma harzianum. *Mycologia* **83**: 257.
- Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Res* **32**: 1792–1797.
- Eisenhaber B, Schneider G, Wildpaner M, Eisenhaber F. 2004. A sensitive predictor for potential GPI lipid modification sites in fungal protein sequences and its application to genome-wide studies for Aspergillus nidulans, Candida albicans, Neurospora crassa, Saccharomyces cerevisiae and Schizosaccharomyces pombe. *J Mol Biol* **337**: 243–253.
- El-Hasan A, Walker F, Schöne J, Buchenauer H. 2009. Detection of viridiofungin A and other antifungal metabolites excreted by Trichoderma harzianum active against different plant pathogens. *Eur J Plant Pathol* **124**: 457–470.
- Elad Y, Barak R, Chet I, Henis Y. 1983. Ultrastructural Studies of the Interaction Between Trichoderma spp. and Plant Pathogenic Fungi. *J Phytopathol* **107**: 168–175.

- Fankhauser N, Mäser P. 2005. Identification of GPI anchor attachment signals by a Kohonen selforganizing map. *Bioinformatics* **21**: 1846–1852.
- Ferrigo D, Raiola A, Piccolo E, Scopel C, Causin R. 2014a. Trichoderma harzianum T22 induces in maize systemic resistance against Fusarium verticillioides. JOURNAL OF PLANT PATHOLOGY.
- Ferrigo D, Raiola A, Rasera R, Causin R. 2014b. Trichoderma harzianum seed treatment controls Fusarium verticillioides colonization and fumonisin contamination in maize under field conditions. *Crop Prot* **65**: 51–56.
- Food And Agriculture Organization Of The United Nations. 2009. *The State Of Food And Agriculture 2009: Livestock In The Balance*. 2009th ed. Fao.
- Galán-Ladero MA, Blanco MT, Sacristán B, Fernández-Calderón MC, Pérez-Giraldo C, Gómez-García AC. 2010. Enzymatic activities of Candida tropicalis isolated from hospitalized patients. *Med Mycol* **48**: 207–210.
- Gastebois A, Fontaine T, Latgé J-P, Mouyna I. 2010. beta(1-3)Glucanosyltransferase Gel4p is essential for Aspergillus fumigatus. *Eukaryotic Cell* **9**: 1294–1298.
- Geremia RA, Goldman GH, Jacobs D, Ardiles W, Vila SB, Van Montagu M, Herrera-Estrella A. 1993. Molecular characterization of the proteinase-encoding gene, prb1, related to mycoparasitism by Trichoderma harzianum. *Mol Microbiol* **8**: 603–613.
- Gíslason MH, Nielsen H, Almagro Armenteros JJ, Johansen AR. 2021. Prediction of GPI-anchored proteins with pointer neural networks. *Current Research in Biotechnology* **3**: 6–13.
- Giurgiu RM, Dumitraș A, Morar G, Scheewe P, Schröder FG. 2017. A Study on the Biological Control of Fusarium oxysporum Using Trichoderma spp., on Soil and Rockwool Substrates in Controlled Environment. *Not Bot Horti Agrobot Cluj Napoca* **46**: 260.
- Goldman N, Yang Z. 1994. A codon-based model of nucleotide substitution for protein-coding DNA sequences. *Mol Biol Evol* **11**: 725–736.
- González-Oviedo NA, Iglesias-Andreu LG, Flores-de la Rosa FR, Rivera-Fernández A, Luna-Rodríguez M. 2022. Genetic analysis of the fungicide resistance in Fusarium oxysporum associated to Vanilla planifolia. *RMF* **40**.
- Gooday GW. 1990. Physiology of microbial degradation of chitin and chitosan. *Biodegradation* **1**: 177–190.
- Goulard C, Hlimi S, Rebuffat S. Trichorzins HAand MA, Antibiotic Peptides from Trichoderma harzianum I. Fermentation, Isolation and Biological Properties.
- Greenbaum D, Colangelo C, Williams K, Gerstein M. 2003. Comparing protein abundance and mRNA expression levels on a genomic scale. *Genome Biol* **4**: 117.
- Grinyer J, McKay M, Nevalainen H, Herbert BR. 2004. Fungal proteomics: initial mapping of biological control strain Trichoderma harzianum. *Curr Genet* **45**: 163–169.
- Guzmán-Guzmán P, Porras-Troncoso MD, Olmedo-Monfil V, Herrera-Estrella A. 2019. Trichoderma species: versatile plant symbionts. *Phytopathology* **109**: 6–16.
- Hadar Y. 1984. Evaluation of *Trichoderma koningii* and *T. harzianum* from New York Soils for Biological Control of Seed Rot Caused by *Pythium* spp. *Phytopathology* **74**: 106.
- Harman GE, Howell CR, Viterbo A, Chet I, Lorito M. 2004. Trichoderma species--opportunistic, avirulent plant symbionts. *Nat Rev Microbiol* **2**: 43–56.

- Harman GE. 2000. Myths and Dogmas of Biocontrol Changes in Perceptions Derived from Research on Trichoderma harzinum T-22. *Plant Dis* **84**: 377–393.
- Hasan MM, Rahman SME, Kim G-H, Abdallah E, Oh D-H. 2012. Antagonistic potentiality of Trichoderma harzianum towards seed-borne fungal pathogens of winter wheat cv. Protiva in vitro and in vivo. *J Microbiol Biotechnol* **22**: 585–591.
- Hasegawa M, Cao Y, Yang Z. 1998. Preponderance of slightly deleterious polymorphism in mitochondrial DNA: nonsynonymous/synonymous rate ratio is much higher within species than between species. *Mol Biol Evol* **15**: 1499–1505.
- Henry I, Sharp PM. 2007. Predicting Gene Expression Level from Codon Usage Bias. *Mol Biol Evol* **24**: 10–12.
- Hermosa R, Viterbo A, Chet I, Monte E. 2012. Plant-beneficial effects of Trichoderma and of its genes. *Microbiology (Reading, Engl)* **158**: 17–25.
- Herrera-Estrella A, Chet I. 1999. Chitinases in biological control. EXS 87: 171–184.
- Holstege FC, Jennings EG, Wyrick JJ, Lee TI, Hengartner CJ, Green MR, Golub TR, Lander ES, Young RA. 1998. Dissecting the regulatory circuitry of a eukaryotic genome. *Cell* **95**: 717–728.
- Howell CR. 2003. Mechanisms Employed by *Trichoderma* Species in the Biological Control of Plant Diseases: The History and Evolution of Current Concepts. *Plant Dis* **87**: 4–10.
- Huang Y, Xiao X, Huang H, Jing J, Zhao H, Wang L, Long X-E. 2018. Contrasting beneficial and pathogenic microbial communities across consecutive cropping fields of greenhouse strawberry. *Appl Microbiol Biotechnol* **102**: 5717–5729.
- Hurst LD, Smith NG. 1999. Do essential genes evolve slowly? Curr Biol 9: 747-750.
- Hurtado-Guerrero R, Schüttelkopf AW, Mouyna I, Ibrahim AFM, Shepherd S, Fontaine T, Latgé J-P, van Aalten DMF. 2009. Molecular mechanisms of yeast cell wall glucan remodeling. *J Biol Chem* **284**: 8461–8469.
- Hyder S, Inam-ul-Haq M, Bibi S, Malik AH, Iqbal S. 2017. (PDF) Novel potential of Trichoderma Spp. As biocontrol agent. *JOURNAL OF ENTOMOLOGY AND ZOOLOGY STUDIES*.
- Iida A, Sanekata M, Fujita T, Tanaka H, Enoki A, Fuse G, Kanai M, Rudewicz PJ, Tachikawa E. 1994. Fungal metabolites. XVI. Structures of new peptaibols, trichokindins I-VII, from the fungus Trichoderma harzianum. *Chem Pharm Bull* 42: 1070–1075.
- Iida A, Sanekata M, Wada S, Fujita T, Tanaka H, Enoki A, Fuse G, Kanai M, Asami K. 1995. Fungal metabolites. XVIII. New membrane-modifying peptides, trichorozins I-IV, from the fungus Trichoderma harzianum. Chem Pharm Bull 43: 392–397.
- Inamdar AA, Bennett JW. 2015. Volatile organic compounds from fungi isolated after hurricane katrina induce developmental defects and apoptosis in a Drosophila melanogaster model. *Environ Toxicol* **30**: 614–620.
- Ina Y. 1995. New methods for estimating the numbers of synonymous and nonsynonymous substitutions. *J Mol Evol* **40**: 190–226.
- Inbar J, Chet I. 1997. Lectins and biocontrol. Crit Rev Biotechnol 17: 1–20.
- Inbar J, Chet I. 1995. The role of recognition in the induction of specific chitinases during mycoparasitism by Trichoderma harzianum. *Microbiology (Reading, Engl)* **141 (Pt 11)**: 2823–2829.

- Jang S, Kwon SL, Lee H, Jang Y, Park MS, Lim YW, Kim C, Kim J-J. 2018. New Report of Three Unrecorded Species in Trichoderma harzianum Species Complex in Korea. *Mycobiology* **46**: 177–184.
- Jansen R, Bussemaker HJ, Gerstein M. 2003. Revisiting the codon adaptation index from a wholegenome perspective: analyzing the relationship between gene expression and codon occurrence in yeast using a variety of models. *Nucleic Acids Res* **31**: 2242–2251.
- Jensen B, Knudsen IMB, Andersen B, Nielsen KF, Thrane U, Jensen DF, Larsen J. 2013. Characterization of microbial communities and fungal metabolites on field grown strawberries from organic and conventional production. *Int J Food Microbiol* **160**: 313–322.
- Jobson RW, Nielsen R, Laakkonen L, Wikström M, Albert VA. 2004. Adaptive evolution of cytochrome c oxidase: Infrastructure for a carnivorous plant radiation. *Proc Natl Acad Sci USA* **101**: 18064–18068.
- Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, et al. 2021. Highly accurate protein structure prediction with AlphaFold. *Nature* **596**: 583–589.
- Kai K, Mine K, Akiyama K, Ohki S, Hayashi H. 2018. Anti-plant viral activity of peptaibols, trichorzins HA II, HA V, and HA VI, isolated from Trichoderma harzianum HK-61. *J Pestic Sci* **43**: 283–286.
- Kimura T. 2013. Natural products and biological activity of the pharmacologically active cauliflower mushroom Sparassis crispa. *Biomed Res Int* **2013**: 982317.
- Kim SH, Vujanovic V. 2016. Relationship between mycoparasites lifestyles and biocontrol behaviors against Fusarium spp. and mycotoxins production. *Appl Microbiol Biotechnol* **100**: 5257–5272.
- Köhl J, Kolnaar R, Ravensberg WJ. 2019. Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. *Front Plant Sci* **10**: 845.
- Kreitman M, Akashi H. 1995. Molecular Evidence for Natural Selection. *Annu Rev Ecol Syst* **26**: 403–422.
- Krogh A, Larsson B, von Heijne G, Sonnhammer ELL. 2001. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. *J Mol Biol* **305**: 567–580.
- Kubicek CP, Steindorff AS, Chenthamara K, Manganiello G, Henrissat B, Zhang J, Cai F, Kopchinskiy AG, Kubicek EM, Kuo A, et al. 2019. Evolution and comparative genomics of the most common Trichoderma species. *BMC Genomics* 20: 485.
- Küçük Ç, Kivanç M, Kinaci E, Kinaci G. 2007. Biological efficacy of Trichoderma harzianum isolate to control some fungal pathogens of wheat (Triticum aestivum) in Turkey. *Biologia* **62**: 283–286.
- Kucuk C. 2014. Enhanced root and shoot growth of wheat (Triticum aestivum L.) by Trichoderma harzianum from Turkey. *Pak J Biol Sci* **17**: 122–125.
- Kuhn PJ, Trinci APJ, Jung MJ, Goosey MW, Copping LG, eds. 1990. *Biochemistry of cell walls and membranes in fungi*. Springer Berlin Heidelberg, Berlin, Heidelberg.
- Kumar S. 2013. Trichoderma: a biological weapon for managing plantdiseases and promoting sustainability. *Int J Agric Sci Vet Med*.
- Lairson LL, Henrissat B, Davies GJ, Withers SG. 2008. Glycosyltransferases: structures, functions, and mechanisms. *Annu Rev Biochem* **77**: 521–555.

Latgé J-P. 2007. The cell wall: a carbohydrate armour for the fungal cell. *Mol Microbiol* **66**: 279–290.

- Lehner SM, Atanasova L, Neumann NKN, Krska R, Lemmens M, Druzhinina IS, Schuhmacher R. 2013. Isotope-assisted screening for iron-containing metabolites reveals a high degree of diversity among known and unknown siderophores produced by Trichoderma spp. *Appl Environ Microbiol* **79**: 18–31.
- Li G-H, Zheng L-J, Liu F-F, Dang L-Z, Li L, Huang R, Zhang K-Q. 2009. New cyclopentenones from strain Trichoderma sp. YLF-3. *Nat Prod Res* 23: 1431–1435.
- Li M-F, Li G-H, Zhang K-Q. 2019. Non-Volatile Metabolites from Trichoderma spp. Metabolites 9.
- Lobley A, Sadowski MI, Jones DT. 2009. pGenTHREADER and pDomTHREADER: new methods for improved protein fold recognition and superfamily discrimination. *Bioinformatics* **25**: 1761–1767.
- Lombardi N, Vitale S, Turrà D, Reverberi M, Fanelli C, Vinale F, Marra R, Ruocco M, Pascale A, d'Errico G, et al. 2018. Root exudates of stressed plants stimulate and attract trichoderma soil fungi. *Mol Plant Microbe Interact* **31**: 982–994.
- Longa CMO, Pertot I, Tosi S. 2008. Ecophysiological requirements and survival of a Trichoderma atroviride isolate with biocontrol potential. *J Basic Microbiol* **48**: 269–277.
- Lorito M, Farkas V, Rebuffat S, Bodo B, Kubicek CP. 1996. Cell wall synthesis is a major target of mycoparasitic antagonism by Trichoderma harzianum. *J Bacteriol* **178**: 6382–6385.
- Lorito M, Woo SL, Harman GE, Monte E. 2010. Translational research on Trichoderma: from 'omics to the field. *Annu Rev Phytopathol* **48**: 395–417.
- Lo CT, Nelson EB, Hayes CK, Harman GE. 1998. Ecological Studies of Transformed Trichoderma harzianum Strain 1295-22 in the Rhizosphere and on the Phylloplane of Creeping Bentgrass. *Phytopathology* **88**: 129–136.
- Managadze D, Rogozin IB, Chernikova D, Shabalina SA, Koonin EV. 2011. Negative correlation between expression level and evolutionary rate of long intergenic noncoding RNAs. *Genome Biol Evol* **3**: 1390–1404.
- Mariani V, Biasini M, Barbato A, Schwede T. 2013. IDDT: a local superposition-free score for comparing protein structures and models using distance difference tests. *Bioinformatics* **29**: 2722–2728.
- Matarese F, Sarrocco S, Gruber S, Seidl-Seiboth V, Vannacci G. 2012. Biocontrol of Fusarium head blight: interactions between Trichoderma and mycotoxigenic Fusarium. *Microbiology (Reading, Engl)* **158**: 98–106.
- McMullin DR, Renaud JB, Barasubiye T, Sumarah MW, Miller JD. 2017. Metabolites of Trichoderma species isolated from damp building materials. *Can J Microbiol* **63**: 621–632.
- Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. 2022. ColabFold: making protein folding accessible to all. *Nat Methods* **19**: 679–682.
- Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer ELL, Tosatto SCE, Paladin L, Raj S, Richardson LJ, et al. 2021. Pfam: The protein families database in 2021. *Nucleic Acids Res* **49**: D412–D419.
- Miyata T, Yasunaga T. 1980. Molecular evolution of mRNA: a method for estimating evolutionary rates of synonymous and amino acid substitutions from homologous nucleotide sequences and its application. *J Mol Evol* **16**: 23–36.

- Montero M, Sanz L, Rey M, Monte E, Llobell A. 2005. BGN16.3, a novel acidic beta-1,6-glucanase from mycoparasitic fungus Trichoderma harzianum CECT 2413. *FEBS J* **272**: 3441–3448.
- Montoya QV, Meirelles LA, Chaverri P, Rodrigues A. 2016. Unraveling Trichoderma species in the attine ant environment: description of three new taxa. *Antonie Van Leeuwenhoek* **109**: 633–651.
- Moustafa-Farag M, Almoneafy A, Mahmoud A, Elkelish A, Arnao MB, Li L, Ai S. 2019. Melatonin and Its Protective Role against Biotic Stress Impacts on Plants. *Biomolecules* **10**.
- Mouyna I, Fontaine T, Vai M, Monod M, Fonzi WA, Diaquin M, Popolo L, Hartland RP, Latgé JP. 2000. Glycosylphosphatidylinositol-anchored glucanosyltransferases play an active role in the biosynthesis of the fungal cell wall. *J Biol Chem* **275**: 14882–14889.
- Mouyna I, Hartl L, Latgé J-P. 2013. β-1,3-glucan modifying enzymes in Aspergillus fumigatus. *Front Microbiol* **4**: 81.
- Mukherjee M, Mukherjee PK, Horwitz BA, Zachow C, Berg G, Zeilinger S. 2012. Trichoderma-plantpathogen interactions: advances in genetics of biological control. *Indian J Microbiol* **52**: 522–529.
- Muse SV. 1996. Estimating synonymous and nonsynonymous substitution rates. *Mol Biol Evol* **13**: 105–114.
- Nei M, Gojobori T. 1986. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. *Mol Biol Evol* **3**: 418–426.
- Neuhof T, Dieckmann R, Druzhinina IS, Kubicek CP, von Döhren H. 2007. Intact-cell MALDI-TOF mass spectrometry analysis of peptaibol formation by the genus Trichoderma/Hypocrea: can molecular phylogeny of species predict peptaibol structures? *Microbiology (Reading, Engl)* 153: 3417–3437.
- Nielsen R. 2001. Statistical tests of selective neutrality in the age of genomics. Heredity 86: 641-647.
- Notredame C, Higgins DG, Heringa J. 2000. T-Coffee: A novel method for fast and accurate multiple sequence alignment. *J Mol Biol* **302**: 205–217.
- Oljira AM, Hussain T, Waghmode TR, Zhao H, Sun H, Liu X, Wang X, Liu B. 2020. Trichoderma Enhances Net Photosynthesis, Water Use Efficiency, and Growth of Wheat (Triticum aestivum L.) under Salt Stress. *Microorganisms* **8**.
- Pandya U. 2010. Application of fungi as a biocontrol agent and their biofertilizer potential in agriculture. *J Adv Dev Res* **1**.
- Panth M, Hassler SC, Baysal-Gurel F. 2020. Methods for management of soilborne diseases in crop production. *Agriculture* **10**: 16.
- Papaspyridi L-M, Zerva A, Topakas E. 2018. Biocatalytic Synthesis of Fungal β-Glucans. *Catalysts* 8: 274.
- Paulick MG, Bertozzi CR. 2008. The glycosylphosphatidylinositol anchor: a complex membraneanchoring structure for proteins. *Biochemistry* **47**: 6991–7000.
- Peltola J, Ritieni A, Mikkola R, Grigoriev PA, Pócsfalvi G, Andersson MA, Salkinoja-Salonen MS. 2004. Biological effects of Trichoderma harzianum peptaibols on mammalian cells. *Appl Environ Microbiol* **70**: 4996–5004.
- Pierleoni A, Martelli PL, Casadio R. 2008. PredGPI: a GPI-anchor predictor. *BMC Bioinformatics* **9**: 392.
- Piovesan D, Monzon AM, Tosatto SCE. 2022. Intrinsic protein disorder and conditional folding in

AlphaFoldDB. Protein Sci 31: e4466.

- Piovesan D, Tabaro F, Paladin L, Necci M, Micetic I, Camilloni C, Davey N, Dosztányi Z, Mészáros B, Monzon AM, et al. 2018. MobiDB 3.0: more annotations for intrinsic disorder, conformational diversity and interactions in proteins. *Nucleic Acids Res* 46: D471–D476.
- Post LE, Nomura M. 1980. DNA sequences from the str operon of Escherichia coli. *J Biol Chem* **255**: 4660–4666.
- Pratibha Sharma. 2011. Biocontrol genes from Trichoderma species: A review. Afr J Biotechnol 10.
- Puigbò P, Bravo IG, Garcia-Vallvé S. 2008. E-CAI: a novel server to estimate an expected value of Codon Adaptation Index (eCAI). *BMC Bioinformatics* **9**: 65.
- Pupko T, Bell RE, Mayrose I, Glaser F, Ben-Tal N. 2002. Rate4Site: an algorithmic tool for the identification of functional regions in proteins by surface mapping of evolutionary determinants within their homologues. *Bioinformatics* **18 Suppl 1**: S71-7.
- Ragni E, Fontaine T, Gissi C, Latgè JP, Popolo L. 2007. The Gas family of proteins of Saccharomyces cerevisiae: characterization and evolutionary analysis. *Yeast* **24**: 297–308.
- Ramada MHS, Steindorff AS, Bloch C, Ulhoa CJ. 2016. Secretome analysis of the mycoparasitic fungus Trichoderma harzianum ALL 42 cultivated in different media supplemented with Fusarium solani cell wall or glucose. *Proteomics* **16**: 477–490.
- Ramamoorthy, V.; Muthusamy, M. R V; Muthusamy, M. 1991. Control of seed borne pathogens of groundnut by antagonistic fungi. *Journal of Biological Control* **5**: 39–41.
- Ramírez-Valdespino CA, Casas-Flores S, Olmedo-Monfil V. 2019. Trichoderma as a Model to Study Effector-Like Molecules. *Front Microbiol* **10**: 1030.
- Ripa FA, Cao W-D, Tong S, Sun J-G. 2019. Assessment of plant growth promoting and abiotic stress tolerance properties of wheat endophytic fungi. *Biomed Res Int* **2019**: 6105865.
- Röhrich CR, Jaklitsch WM, Voglmayr H, Iversen A, Vilcinskas A, Nielsen KF, Thrane U, von Döhren H, Brückner H, Degenkolb T. 2014. Front line defenders of the ecological niche! Screening the structural diversity of peptaibiotics from saprotrophic and fungicolous Trichoderma/Hypocrea species. *Fungal Divers* 69: 117–146.
- Rojo F, Ferez M, Reynoso M, Torres A, Chulze S. 2007. Effect of Trichoderma species on growth of Fusariumproliferatiom and production of fumonisins, fusaproliferin and beauvericin. *Mycotoxin Res* **23**: 173–179.
- Ruano-Rosa D, Prieto P, Rincón AM, Gómez-Rodríguez MV, Valderrama R, Barroso JB, Mercado-Blanco J. 2016. Fate of Trichoderma harzianum in the olive rhizosphere: time course of the root colonization process and interaction with the fungal pathogen Verticillium dahliae. *Biocontrol* **61**: 269–282.
- Ruff KM, Pappu RV. 2021. Alphafold and implications for intrinsically disordered proteins. *J Mol Biol* **433**: 167208.
- Sandoval-Denis M, Sutton DA, Cano-Lira JF, Gené J, Fothergill AW, Wiederhold NP, Guarro J. 2014. Phylogeny of the clinically relevant species of the emerging fungus Trichoderma and their antifungal susceptibilities. *J Clin Microbiol* **52**: 2112–2125.
- Schaeffer HJ, Leykam J, Walton JD. 1994. Cloning and targeted gene disruption of EXG1, encoding exo-beta 1, 3-glucanase, in the phytopathogenic fungus Cochliobolus carbonum. *Appl Environ Microbiol* **60**: 594–598.

- Scharf DH, Brakhage AA, Mukherjee PK. 2016. Gliotoxin--bane or boon? *Environ Microbiol* **18**: 1096–1109.
- Sharma V, Salwan R, Sharma PN, Kanwar SS. 2017. Elucidation of biocontrol mechanisms of Trichoderma harzianum against different plant fungal pathogens: Universal yet host specific response. *Int J Biol Macromol* **95**: 72–79.
- Sharma V, Salwan R, Sharma PN. 2016. Differential response of extracellular proteases of trichoderma harzianum against fungal phytopathogens. *Curr Microbiol* **73**: 419–425.
- Sharp PM, Li WH. 1986. An evolutionary perspective on synonymous codon usage in unicellular organisms. *J Mol Evol* **24**: 28–38.
- Sharp PM, Li WH. 1987. The codon Adaptation Index--a measure of directional synonymous codon usage bias, and its potential applications. *Nucleic Acids Res* **15**: 1281–1295.
- Simón MR. 2015. Enfermedades de trigo. https://aulavirtual.agro.unlp.edu.ar/.
- Singh HB, Keswani C, Ray S, Yadav SK, Singh SP, Singh S, Sarma BK. 2015. Beauveria bassiana: Biocontrol Beyond Lepidopteran Pests. In *Biocontrol of Lepidopteran Pests: Use of Soil Microbes* and their Metabolites (eds. K.S. Sree and A. Varma), Vol. 43 of Soil Biology, pp. 219–235, Springer International Publishing, Cham.
- Song H, Liu J, Song Q, Zhang Q, Tian P, Nan Z. 2017. Comprehensive Analysis of Codon Usage Bias in Seven Epichloë Species and Their Peramine-Coding Genes. *Front Microbiol* **8**: 1419.
- Sood M, Kapoor D, Kumar V, Sheteiwy MS, Ramakrishnan M, Landi M, Araniti F, Sharma A. 2020. Trichoderma: the "secrets" of a multitalented biocontrol agent. *Plants* **9**.
- Stefani M, Dobson CM. 2003. Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. *J Mol Med* **81**: 678–699.
- Steindorff AS, Ramada MHS, Coelho ASG, Miller RNG, Pappas GJ, Ulhoa CJ, Noronha EF. 2014. Identification of mycoparasitism-related genes against the phytopathogen Sclerotinia sclerotiorum through transcriptome and expression profile analysis in Trichoderma harzianum. BMC Genomics 15: 204.
- Steyaert JM, Weld RJ, Mendoza-Mendoza A, Stewart A. 2010. Reproduction without sex: conidiation in the filamentous fungus Trichoderma. *Microbiology (Reading, Engl)* **156**: 2887–2900.
- Stroo E, Koopman M, Nollen EAA, Mata-Cabana A. 2017. Cellular regulation of amyloid formation in aging and disease. *Front Neurosci* **11**: 64.
- Suarez B, Rey M, Castillo P, Monte E, Llobell A. 2004. Isolation and characterization of PRA1, a trypsin-like protease from the biocontrol agent Trichoderma harzianum CECT 2413 displaying nematicidal activity. *Appl Microbiol Biotechnol* **65**: 46–55.
- Sun M, Ren Q, Guan G, Liu Z, Ma M, Gou H, Chen Z, Li Y, Liu A, Niu Q, et al. 2011. Virulence of Beauveria bassiana, Metarhizium anisopliae and Paecilomyces lilacinus to the engorged female Hyalomma anatolicum anatolicum tick (Acari: Ixodidae). Vet Parasitol 180: 389–393.
- Suzuki Y, Gojobori T. 1999. A method for detecting positive selection at single amino acid sites. *Mol Biol Evol* **16**: 1315–1328.
- Tamandegani PR, Marik T, Zafari D, Balázs D, Vágvölgyi C, Szekeres A, Kredics L. 2020. Changes in Peptaibol Production of Trichoderma Species during In Vitro Antagonistic Interactions with Fungal Plant Pathogens. *Biomolecules* **10**.

Tsukamoto Y, Takeuchi H. 2021. Other types of glycosylation. Adv Exp Med Biol 1325: 117–135.

- Tunyasuvunakool K, Adler J, Wu Z, Green T, Zielinski M, Žídek A, Bridgland A, Cowie A, Meyer C, Laydon A, et al. 2021. Highly accurate protein structure prediction for the human proteome. *Nature* 596: 590–596.
- Vakili O, Khatami SH, Maleksabet A, Movahedpour A, Fana SE, Sadegh R, Salmanzadeh AH, Razeghifam H, Nourdideh S, Tehrani SS, et al. 2021. Finding appropriate signal peptides for secretory production of recombinant glucarpidase: an in silicomethod. *Recent Pat Biotechnol* 15: 302–315.
- Van Bohemen A-I, Zalouk-Vergnoux A, Poirier L, Phuong NN, Inguimbert N, Ben Haj Salah K, Ruiz N, Pouchus YF. 2016. Development and validation of LC-MS methods for peptaibol quantification in fungal extracts according to their lengths. *J Chromatogr B Analyt Technol Biomed Life Sci* **1009–1010**: 25–33.
- Van Wees SCM, Van der Ent S, Pieterse CMJ. 2008. Plant immune responses triggered by beneficial microbes. *Curr Opin Plant Biol* **11**: 443–448.
- Vinale F, Nicoletti R, Borrelli F, Mangoni A, Parisi OA, Marra R, Lombardi N, Lacatena F, Grauso L, Finizio S, et al. 2017. Co-Culture of Plant Beneficial Microbes as Source of Bioactive Metabolites. *Sci Rep* **7**: 14330.
- Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M. 2008. Trichoderma–plant– pathogen interactions. *Soil Biology and Biochemistry* **40**: 1–10.
- Viterbo A, Haran S, Friesem D, Ramot O, Chet I. 2001. Antifungal activity of a novel endochitinase gene (chit36) from Trichoderma harzianum Rifai TM. *FEMS Microbiol Lett* **200**: 169–174.
- Viterbo A, Montero M, Ramot O, Friesem D, Monte E, Llobell A, Chet I. 2002. Expression regulation of the endochitinase chit36 from Trichoderma asperellum (T. harzianum T-203). *Curr Genet* **42**: 114–122.
- Wang D, Liu F, Wang L, Huang S, Yu J. 2011. Nonsynonymous substitution rate (Ka) is a relatively consistent parameter for defining fast-evolving and slow-evolving protein-coding genes. *Biol Direct* **6**: 13.
- Wayne ML, Simonsen KL. 1998. Statistical tests of neutrality in the age of weak selection. *Trends Ecol Evol* **13**: 236–240.
- Weijers CAGM, Franssen MCR, Visser GM. 2008. Glycosyltransferase-catalyzed synthesis of bioactive oligosaccharides. *Biotechnol Adv* **26**: 436–456.
- Wilson PS, Ketola EO, Ahvenniemi PM, Lehtonen MJ, Valkonen JPT. 2007. Dynamics of soilborne Rhizoctonia solani in the presence of Trichoderma harzianum: effects on stem canker, black scurf and progeny tubers of potato. *Plant Pathology* **0**: 070921225609002-???
- Wiśniewska H, Basiński T, Chełkowski J, Perkowski J. 2011. Fusarium Sporotrichioides Sherb. Toxins Evaluated in Cereal Grain with Trichoderma Harzianum. *J Plant Prot Res* **51**: 134–139.
- Wu G, Culley DE, Zhang W. 2005. Predicted highly expressed genes in the genomes of Streptomyces coelicolor and Streptomyces avermitilis and the implications for their metabolism. *Microbiology* (*Reading, Engl*) **151**: 2175–2187.
- Xue AG, Guo W, Chen Y, Siddiqui I, Marchand G, Liu J, Ren C. 2017. Effect of seed treatment with novel strains of Trichoderma spp. on establishment and yield of spring wheat. *Crop Prot* **96**: 97–102.

- Yang J, Tian B, Liang L, Zhang K-Q. 2007. Extracellular enzymes and the pathogenesis of nematophagous fungi. *Appl Microbiol Biotechnol* **75**: 21–31.
- Yang Z, Bielawski JP. 2000. Statistical methods for detecting molecular adaptation. *Trends Ecol Evol* **15**: 496–503.
- Yang Z, Nielsen R. 2002. Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. *Mol Biol Evol* **19**: 908–917.
- Yang Z, Nielsen R. 2000. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. *Mol Biol Evol* **17**: 32–43.
- Yang Z, Nielsen R. 1998. Synonymous and nonsynonymous rate variation in nuclear genes of mammals. *J Mol Evol* **46**: 409–418.
- Yang Z, Wong WSW, Nielsen R. 2005. Bayes empirical bayes inference of amino acid sites under positive selection. *Mol Biol Evol* 22: 1107–1118.
- Yang Z. 2019. Adaptive Molecular Evolution. In *Handbook of statistical genomics: two volume set* (eds. D. Balding, I. Moltke, and J. Marioni), pp. 369–396, Wiley.
- Yang Z. 1998. Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. *Mol Biol Evol* **15**: 568–573.
- Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24: 1586–1591.
- Yan JF, Broughton SJ, Yang SL, Gange AC. 2015. Do endophytic fungi grow through their hosts systemically? *Fungal Ecol* **13**: 53–59.
- Yao L, Yang Q, Song J, Tan C, Guo C, Wang L, Qu L, Wang Y. 2013. Cloning, annotation and expression analysis of mycoparasitism-related genes in Trichoderma harzianum 88. *J Microbiol* 51: 174–182.
- Yu L, Wang X, Ting N, Zhang Y. 2011. Mitogenomic analysis of Chinese snub-nosed monkeys: Evidence of positive selection in NADH dehydrogenase genes in high-altitude adaptation. *Mitochondrion* **11**: 497–503.
- Zea DJ, Miguel Monzon A, Fornasari MS, Marino-Buslje C, Parisi G. 2013. Protein conformational diversity correlates with evolutionary rate. *Mol Biol Evol* **30**: 1500–1503.
- Zhang F, Ge H, Zhang F, Guo N, Wang Y, Chen L, Ji X, Li C. 2016. Biocontrol potential of Trichoderma harzianum isolate T-aloe against Sclerotinia sclerotiorum in soybean. *Plant Physiol Biochem* **100**: 64–74.
- Zhang J, Nielsen R, Yang Z. 2005. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. *Mol Biol Evol* **22**: 2472–2479.
- Zhang J, Yang J-R. 2015. Determinants of the rate of protein sequence evolution. *Nat Rev Genet* **16**: 409–420.
- Zhang J-C, Chen G-Y, Li X-Z, Hu M, Wang B-Y, Ruan B-H, Zhou H, Zhao L-X, Zhou J, Ding Z-T, et al. 2017. Phytotoxic, antibacterial, and antioxidant activities of mycotoxins and other metabolites from Trichoderma sp. *Nat Prod Res* **31**: 2745–2752.
- Zhang J. 2008. Positive selection, not negative selection, in the pseudogenization of rcsA in Yersinia pestis. *Proc Natl Acad Sci USA* **105**: E69; author reply E70.
- Zhao G, Yin G, Inamdar AA, Luo J, Zhang N, Yang I, Buckley B, Bennett JW. 2017. Volatile organic compounds emitted by filamentous fungi isolated from flooded homes after Hurricane Sandy

show toxicity in a Drosophila bioassay. Indoor Air 27: 518–528.

Apéndice

Capítulo 2

2.1 Identificación de las 652 proteínas relacionadas con mecanismos de biocontrol según bibliografía y curado, denominada *"Base de datos Biocontrol"*

From	Entry	Entry Name	Protein names	Curado proteínas	Organism
Q92455	Q92455	ABF1_HYPJE	Alpha-L- arabinofuranosidas e (Arabinosidase) (EC 3.2.1.55)	Arabinofuranosidas a	T. reseei
P48792	P48792	XYL1_TRIKO	Arabinofuranosidas e/B-xylosidase [Includes: Alpha-L- arabinofuranosidas e (Arabinosidase) (EC 3.2.1.55); Beta-xylosidase (EC 3.2.1.37) (1,4- beta-D-xylan xylohydrolase) (Xylan 1,4-beta- xylosidase)]	Xilosidasa	T. koningii
A4V8W6	A4V8W6	A4V8W6_TRIHA	Aspartic endopeptidase	Endopeptidasa	T. harzianum
A0A395NL50	A0A395NL50	A0A395NL50_TRIA R	Catalase (EC 1.11.1.6)	Catalasa	T. arundinaceum
A0A6V8QSI7	A0A6V8QSI7	A0A6V8QSI7_9HY PO	Catalase (EC 1.11.1.6)	Catalasa	T. asperellum
A0A2T4BDR2	A0A2T4BDR2	A0A2T4BDR2_9HY PO	Catalase (EC 1.11.1.6)	Catalasa	T. citrinoviride
A0A2T4BJW8	A0A2T4BJW8	A0A2T4BJW8_9HY PO	Catalase (EC 1.11.1.6)	Catalasa	T. citrinoviride
A0A2P4ZIF4	A0A2P4ZIF4	A0A2P4ZIF4_9HY PO	Catalase (EC 1.11.1.6)	Catalasa	T. gamsii

A0A1T3C8H4	A0A1T3C8H4	A0A1T3C8H4_9HY PO	Catalase (EC 1.11.1.6)	Catalasa	T. guizhouense
A0A1T3CDL1	A0A1T3CDL1	A0A1T3CDL1_9HY PO	Catalase (EC 1.11.1.6)	Catalasa	T. guizhouense
A0A8G0L622	A0A8G0L622	A0A8G0L622_9HY PO	Catalase (EC 1.11.1.6)	Catalasa	T. simmonsii
A0A8G0PLQ1	A0A8G0PLQ1	A0A8G0PLQ1_9HY PO	Catalase (EC 1.11.1.6)	Catalasa	T. simmonsii
B7SLA7	B7SLA7	B7SLA7_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. aethiopicum
A0A6B9XE56	A0A6B9XE56	A0A6B9XE56_9HY PO	Chitinase (EC 3.2.1.14)	Quitinasa	T. afroharzianum
Q8NK19	Q8NK19	Q8NK19_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. aggressivum
A0A165U5D6	A0A165U5D6	A0A165U5D6_9HY PO	Chitinase (EC 3.2.1.14)	Quitinasa	T. asperellum
A0A191XT55	A0A191XT55	A0A191XT55_9HY PO	Chitinase (EC 3.2.1.14)	Quitinasa	T. asperellum
A0A2I6DZE9	A0A2I6DZE9	A0A2I6DZE9_9HY PO	Chitinase (EC 3.2.1.14)	Quitinasa	T. asperellum
A0A6B9HC99	A0A6B9HC99	A0A6B9HC99_9HY PO	Chitinase (EC 3.2.1.14)	Quitinasa	T. asperellum
A0A6B9XE37	A0A6B9XE37	A0A6B9XE37_9HY PO	Chitinase (EC 3.2.1.14)	Quitinasa	T. asperellum
A0A6B9XEF8	A0A6B9XEF8	A0A6B9XEF8_9HY PO	Chitinase (EC 3.2.1.14)	Quitinasa	T. asperellum
A0A6B9XH16	A0A6B9XH16	A0A6B9XH16_9HY PO	Chitinase (EC 3.2.1.14)	Quitinasa	T. asperellum
E2FMQ4	E2FMQ4	E2FMQ4_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. asperellum
E2FMQ5	E2FMQ5	E2FMQ5_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. asperellum
E2FMQ9	E2FMQ9	E2FMQ9_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. asperellum
E2FMR0	E2FMR0	E2FMR0_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. asperellum
E2FMR2	E2FMR2	E2FMR2_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. asperellum

Q86ZR3	Q86ZR3	Q86ZR3_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. asperellum
G9NLF9	G9NLF9	G9NLF9_HYPAI	Chitinase (EC 3.2.1.14)	Quitinasa	T. atriviridae
G9NYE9	G9NYE9	G9NYE9_HYPAI	Chitinase (EC 3.2.1.14)	Quitinasa	T. atriviridae
G9PAD4	G9PAD4	G9PAD4_HYPAI	Chitinase (EC 3.2.1.14)	Quitinasa	T. atriviridae
Q2Y0V6	Q2Y0V6	Q2Y0V6_HYPAT	Chitinase (EC 3.2.1.14)	Quitinasa	T. atriviridae
Q2Y0V8	Q2Y0V8	Q2Y0V8_HYPAT	Chitinase (EC 3.2.1.14)	Quitinasa	T. atriviridae
Q2Y0V9	Q2Y0V9	Q2Y0V9_HYPAT	Chitinase (EC 3.2.1.14)	Quitinasa	T. atriviridae
Q8NK23	Q8NK23	Q8NK23_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. aureoviride
E3W952	E3W952	E3W952_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. barbatum
E3W953	E3W953	E3W953_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. barbatum
E3W946	E3W946	E3W946_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. caesareum
E2PTX8	E2PTX8	E2PTX8_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. cerinum
I6LDB6	I6LDB6	I6LDB6_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. cerinum
I6LDB7	I6LDB7	I6LDB7_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. cerinum
I6LDB8	I6LDB8	I6LDB8_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. cerinum
Q8NK44	Q8NK44	Q8NK44_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. citrinum
Q19AT2	Q19AT2	Q19AT2_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. compactum
Q8NK42	Q8NK42	Q8NK42_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. crassum
I6LDD8	l6LDD8	I6LDD8_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. fertile

Q8NK39	Q8NK39	Q8NK39_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. fertile
Q5IS21	Q5IS21	Q5IS21_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. flaviconidium
Q5IS22	Q5IS22	Q5IS22_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. flaviconidium
E3W948	E3W948	E3W948_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. floccosum
Q8NK18	Q8NK18	Q8NK18_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. gelatinosum
Q5IS23	Q5IS23	Q5IS23_TRIHM	Chitinase (EC 3.2.1.14)	Quitinasa	T. hamatum
Q86ZV4	Q86ZV4	Q86ZV4_TRIHM	Chitinase (EC 3.2.1.14)	Quitinasa	T. hamatum
A0A0B5AAF0	A0A0B5AAF0	A0A0B5AAF0_9HY PO	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A0A0B5AEI5	A0A0B5AEI5	A0A0B5AEI5_9HY PO	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A0A0B5AEJ2	A0A0B5AEJ2	A0A0B5AEJ2_9HY PO	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A0A0B5AGI7	A0A0B5AGI7	A0A0B5AGI7_9HY PO	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A0A0B5AGP7	A0A0B5AGP7	A0A0B5AGP7_9HY PO	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
Q8NK20	Q8NK20	Q8NK20_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
Q8NK22	Q8NK22	Q8NK22_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
Q8NK21	Q8NK21	Q8NK21_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A0A0B5AAG7	A0A0B5AAG7	A0A0B5AAG7_9HY PO	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A0A0B5AF40	A0A0B5AF40	A0A0B5AF40_9HY PO	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A0A0B5AF64	A0A0B5AF64	A0A0B5AF64_9HY PO	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A0A024HVH8	A0A024HVH8	A0A024HVH8_TRI HA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum

A0A024HVI0	A0A024HVI0	A0A024HVI0_TRIH A	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A0A024HVS2	A0A024HVS2	A0A024HVS2_TRI HA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A0A024HVS7	A0A024HVS7	A0A024HVS7_TRI HA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A0A024HVT2	A0A024HVT2	A0A024HVT2_TRI HA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A0A024HW45	A0A024HW45	A0A024HW45_TRI HA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A0A024HW94	A0A024HW94	A0A024HW94_TRI HA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A0A024HW97	A0A024HW97	A0A024HW97_TRI HA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A0A024HWA1	A0A024HWA1	A0A024HWA1_TRI HA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A0A024HWA5	A0A024HWA5	A0A024HWA5_TRI HA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A0A2I6DZH3	A0A2I6DZH3	A0A2I6DZH3_TRIH A	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A0A6B9XIN4	A0A6B9XIN4	A0A6B9XIN4_TRIH A	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A0A6B9XKA7	A0A6B9XKA7	A0A6B9XKA7_TRI HA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A0A6B9XKC3	A0A6B9XKC3	A0A6B9XKC3_TRI HA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A0A6B9XKU8	A0A6B9XKU8	A0A6B9XKU8_TRI HA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A9XE69	A9XE69	A9XE69_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A9XE70	A9XE70	A9XE70_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A9XE71	A9XE71	A9XE71_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A9XE72	A9XE72	A9XE72_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A9XE73	A9XE73	A9XE73_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum

A9XE74	A9XE74	A9XE74_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A9XE75	A9XE75	A9XE75_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A9XE76	A9XE76	A9XE76_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A9XE77	A9XE77	A9XE77_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A9XE78	A9XE78	A9XE78_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A9XE79	A9XE79	A9XE79_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A9XE80	A9XE80	A9XE80_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A9XE81	A9XE81	A9XE81_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A9XE82	A9XE82	A9XE82_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A9XE83	A9XE83	A9XE83_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A9XE84	A9XE84	A9XE84_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A9XE85	A9XE85	A9XE85_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A9XE86	A9XE86	A9XE86_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A9XE87	A9XE87	A9XE87_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A9XE88	A9XE88	A9XE88_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A9XE89	A9XE89	A9XE89_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A9XE90	A9XE90	A9XE90_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A9XE91	A9XE91	A9XE91_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A9XE92	A9XE92	A9XE92_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum

A9XE93	A9XE93	A9XE93_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A9XE94	A9XE94	A9XE94_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A9XE95	A9XE95	A9XE95_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A9XE96	A9XE96	A9XE96_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A9XE97	A9XE97	A9XE97_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A9XE98	A9XE98	A9XE98_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A9XE99	A9XE99	A9XE99_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A9XEA0	A9XEA0	A9XEA0_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A9XEA1	A9XEA1	A9XEA1_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A9XEA2	A9XEA2	A9XEA2_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A9XEA3	A9XEA3	A9XEA3_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A9XEA4	A9XEA4	A9XEA4_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A9XEA5	A9XEA5	A9XEA5_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
A9XEA6	A9XEA6	A9XEA6_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
B6RVB8	B6RVB8	B6RVB8_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
B6RVB9	B6RVB9	B6RVB9_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
B8LGA1	B8LGA1	B8LGA1_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
B8LGA2	B8LGA2	B8LGA2_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
B8LGA3	B8LGA3	B8LGA3_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum

B8LGA4	B8LGA4	B8LGA4_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
B8LGA5	B8LGA5	B8LGA5_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
B8LGA6	B8LGA6	B8LGA6_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
B8LGA7	B8LGA7	B8LGA7_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
B8LGA8	B8LGA8	B8LGA8_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
B8XPY8	B8XPY8	B8XPY8_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
D2DPP0	D2DPP0	D2DPP0_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
D2DPP1	D2DPP1	D2DPP1_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
D2DPP4	D2DPP4	D2DPP4_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
D2DPP5	D2DPP5	D2DPP5_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
D2DPP7	D2DPP7	D2DPP7_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
D2DPP8	D2DPP8	D2DPP8_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
D2DPP9	D2DPP9	D2DPP9_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
D2DPQ0	D2DPQ0	D2DPQ0_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
D2DPQ1	D2DPQ1	D2DPQ1_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
D2DPQ4	D2DPQ4	D2DPQ4_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
D2DPQ5	D2DPQ5	D2DPQ5_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
D2DPQ8	D2DPQ8	D2DPQ8_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
D2DPQ9	D2DPQ9	D2DPQ9_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum

D2DPR0	D2DPR0	D2DPR0_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
D2DPR1	D2DPR1	D2DPR1_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
D2DPR2	D2DPR2	D2DPR2_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
D2DPR3	D2DPR3	D2DPR3_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
D2DPR5	D2DPR5	D2DPR5_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
D2DPR6	D2DPR6	D2DPR6_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
E2FMQ3	E2FMQ3	E2FMQ3_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
E2FMR3	E2FMR3	E2FMR3_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
I3NWL4	I3NWL4	I3NWL4_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
I3NWL5	I3NWL5	I3NWL5_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
I6LDB9	I6LDB9	I6LDB9_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
I6LDC0	I6LDC0	I6LDC0_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
I6LDC1	I6LDC1	I6LDC1_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
I6LDC2	I6LDC2	I6LDC2_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
I6LDC3	I6LDC3	I6LDC3_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
I6LDC6	I6LDC6	I6LDC6_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
I6LDC7	I6LDC7	I6LDC7_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
I6LDC8	I6LDC8	I6LDC8_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
I6LDC9	I6LDC9	I6LDC9_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum

I6LDD0	I6LDD0	I6LDD0_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
I6LDD1	I6LDD1	I6LDD1_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
I6LDD2	I6LDD2	I6LDD2_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
I6LDD3	I6LDD3	I6LDD3_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
I6LDD4	I6LDD4	I6LDD4_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
I6LDD7	l6LDD7	I6LDD7_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
Q2EI12	Q2EI12	Q2EI12_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
Q2EI13	Q2EI13	Q2EI13_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
Q2EI14	Q2EI14	Q2EI14_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
Q3S4X1	Q3S4X1	Q3S4X1_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
Q5GEX7	Q5GEX7	Q5GEX7_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
Q5GEX8	Q5GEX8	Q5GEX8_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
Q5GEY5	Q5GEY5	Q5GEY5_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
Q5GEY7	Q5GEY7	Q5GEY7_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
Q5GEZ3	Q5GEZ3	Q5GEZ3_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
Q70B22	Q70B22	Q70B22_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
Q8NK31	Q8NK31	Q8NK31_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
Q8NK32	Q8NK32	Q8NK32_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
Q8NK33	Q8NK33	Q8NK33_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum

Q8NK34	Q8NK34	Q8NK34_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
Q8NK35	Q8NK35	Q8NK35_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
Q8NK36	Q8NK36	Q8NK36_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
Q8NK37	Q8NK37	Q8NK37_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
Q8NK38	Q8NK38	Q8NK38_TRIHA	Chitinase (EC 3.2.1.14)	Quitinasa	T. harzianum
Q8NK17	Q8NK17	Q8NK17_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. hunua
Q8NK30	Q8NK30	Q8NK30_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. inhamatum
E3W947	E3W947	E3W947_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. ivoriense
E2FMQ7	E2FMQ7	E2FMQ7_TRIKO	Chitinase (EC 3.2.1.14)	Quitinasa	T. koningii
A0A5B8WBZ4	A0A5B8WBZ4	A0A5B8WBZ4_9H YPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. koningiopsis
E3W950	E3W950	E3W950_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. lanuginosum
E3W951	E3W951	E3W951_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. lanuginosum
D2DPP2	D2DPP2	D2DPP2_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. lixii
D2DPP3	D2DPP3	D2DPP3_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. lixii
D2DPQ3	D2DPQ3	D2DPQ3_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. lixii
D2DPQ6	D2DPQ6	D2DPQ6_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. lixii
D2DPQ7	D2DPQ7	D2DPQ7_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. lixii
D2DPR4	D2DPR4	D2DPR4_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. lixii
A0A6B9XIZ8	A0A6B9XIZ8	A0A6B9XIZ8_TRIL O	Chitinase (EC 3.2.1.14)	Quitinasa	T. longibrachiatum

B7SL79	B7SL79	B7SL79_TRILO	Chitinase (EC 3.2.1.14)	Quitinasa	T. longibrachiatum
B7SL80	B7SL80	B7SL80_TRILO	Chitinase (EC 3.2.1.14)	Quitinasa	T. longibrachiatum
B7SL84	B7SL84	B7SL84_TRILO	Chitinase (EC 3.2.1.14)	Quitinasa	T. longibrachiatum
B7SL88	B7SL88	B7SL88_TRILO	Chitinase (EC 3.2.1.14)	Quitinasa	T. longibrachiatum
B7SL89	B7SL89	B7SL89_TRILO	Chitinase (EC 3.2.1.14)	Quitinasa	T. longibrachiatum
B7SL90	B7SL90	B7SL90_TRILO	Chitinase (EC 3.2.1.14)	Quitinasa	T. longibrachiatum
B7SL91	B7SL91	B7SL91_TRILO	Chitinase (EC 3.2.1.14)	Quitinasa	T. longibrachiatum
B7SL92	B7SL92	B7SL92_TRILO	Chitinase (EC 3.2.1.14)	Quitinasa	T. longibrachiatum
B7SL93	B7SL93	B7SL93_TRILO	Chitinase (EC 3.2.1.14)	Quitinasa	T. longibrachiatum
B7SL94	B7SL94	B7SL94_TRILO	Chitinase (EC 3.2.1.14)	Quitinasa	T. longibrachiatum
B7SL95	B7SL95	B7SL95_TRILO	Chitinase (EC 3.2.1.14)	Quitinasa	T. longibrachiatum
B7SL98	B7SL98	B7SL98_TRILO	Chitinase (EC 3.2.1.14)	Quitinasa	T. longibrachiatum
B7SLA0	B7SLA0	B7SLA0_TRILO	Chitinase (EC 3.2.1.14)	Quitinasa	T. longibrachiatum
B7SLA1	B7SLA1	B7SLA1_TRILO	Chitinase (EC 3.2.1.14)	Quitinasa	T. longibrachiatum
B7SLA3	B7SLA3	B7SLA3_TRILO	Chitinase (EC 3.2.1.14)	Quitinasa	T. longibrachiatum
B7SLA4	B7SLA4	B7SLA4_TRILO	Chitinase (EC 3.2.1.14)	Quitinasa	T. longibrachiatum
B7SLA5	B7SLA5	B7SLA5_TRILO	Chitinase (EC 3.2.1.14)	Quitinasa	T. longibrachiatum
B7SLA6	B7SLA6	B7SLA6_TRILO	Chitinase (EC 3.2.1.14)	Quitinasa	T. longibrachiatum
B7SLB2	B7SLB2	B7SLB2_TRILO	Chitinase (EC 3.2.1.14)	Quitinasa	T. longibrachiatum

B7SLB3	B7SLB3	B7SLB3_TRILO	Chitinase (EC 3.2.1.14)	Quitinasa	T. longibrachiatum
B7SLB4	B7SLB4	B7SLB4_TRILO	Chitinase (EC 3.2.1.14)	Quitinasa	T. longibrachiatum
B7SLB5	B7SLB5	B7SLB5_TRILO	Chitinase (EC 3.2.1.14)	Quitinasa	T. longibrachiatum
B7SLB8	B7SLB8	B7SLB8_TRILO	Chitinase (EC 3.2.1.14)	Quitinasa	T. longibrachiatum
Q2EI15	Q2EI15	Q2EI15_TRILO	Chitinase (EC 3.2.1.14)	Quitinasa	T. longibrachiatum
Q8NK29	Q8NK29	Q8NK29_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. longipile
E3W944	E3W944	E3W944_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. medusae
E3W945	E3W945	E3W945_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. medusae
Q8NK15	Q8NK15	Q8NK15_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. minutisporum
Q8NK16	Q8NK16	Q8NK16_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. oblongisporum
Q8NK28	Q8NK28	Q8NK28_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. oblongisporum
B7SL81	B7SL81	B7SL81_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. orientale
B7SL83	B7SL83	B7SL83_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. orientale
B7SL85	B7SL85	B7SL85_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. orientale
B7SL86	B7SL86	B7SL86_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. orientale
B7SL87	B7SL87	B7SL87_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. orientale
B7SL96	B7SL96	B7SL96_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. orientale
B7SLA2	B7SLA2	B7SLA2_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. orientale
B7SLB6	B7SLB6	B7SLB6_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. orientale

B7SLB7	B7SLB7	B7SLB7_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. orientale
Q8TG31	Q8TG31	Q8TG31_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. piluliferum
Q8TG32	Q8TG32	Q8TG32_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. polysporum
Q8TG33	Q8TG33	Q8TG33_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. polysporum
Q5IS08	Q5IS08	Q5IS08_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. pubescens
G0R7M8	G0R7M8	G0R7M8_HYPJQ	Chitinase (EC 3.2.1.14)	Quitinasa	T. reseei
G0R9G0	G0R9G0	G0R9G0_HYPJQ	Chitinase (EC 3.2.1.14)	Quitinasa	T. reseei
G0REU2	G0REU2	G0REU2_HYPJQ	Chitinase (EC 3.2.1.14)	Quitinasa	T. reseei
G0RK12	G0RK12	G0RK12_HYPJQ	Chitinase (EC 3.2.1.14)	Quitinasa	T. reseei
A2VEB1	A2VEB1	A2VEB1_HYPJE	Chitinase (EC 3.2.1.14)	Quitinasa	T. reseei
A2VEB2	A2VEB2	A2VEB2_HYPJE	Chitinase (EC 3.2.1.14)	Quitinasa	T. reseei
A2VEC1	A2VEC1	A2VEC1_HYPJE	Chitinase (EC 3.2.1.14)	Quitinasa	T. reseei
A2VEC2	A2VEC2	A2VEC2_HYPJE	Chitinase (EC 3.2.1.14)	Quitinasa	T. reseei
E3W1Z0	E3W1Z0	E3W1Z0_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. rossicum
E3W1Z3	E3W1Z3	E3W1Z3_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. rossicum
E3W1Z4	E3W1Z4	E3W1Z4_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. rossicum
E3W1Z5	E3W1Z5	E3W1Z5_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. rossicum
Q8NK27	Q8NK27	Q8NK27_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. spirale
Q8NK26	Q8NK26	Q8NK26_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. strictipile

Q8NK41	Q8NK41	Q8NK41_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. strictipile
E3W1S9	E3W1S9	E3W1S9_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. stromaticum
E3W1T5	E3W1T5	E3W1T5_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. stromaticum
E3W1T7	E3W1T7	E3W1T7_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. stromaticum
E3W1T9	E3W1T9	E3W1T9_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. stromaticum
E3W1U2	E3W1U2	E3W1U2_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. stromaticum
E3W1U3	E3W1U3	E3W1U3_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. stromaticum
E3W1U7	E3W1U7	E3W1U7_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. stromaticum
E3W1V0	E3W1V0	E3W1V0_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. stromaticum
E3W1V1	E3W1V1	E3W1V1_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. stromaticum
E3W1V2	E3W1V2	E3W1V2_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. stromaticum
E3W1V4	E3W1V4	E3W1V4_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. stromaticum
E3W1V5	E3W1V5	E3W1V5_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. stromaticum
E3W1V6	E3W1V6	E3W1V6_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. stromaticum
E3W1W0	E3W1W0	E3W1W0_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. stromaticum
E3W1W2	E3W1W2	E3W1W2_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. stromaticum
E3W1W4	E3W1W4	E3W1W4_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. stromaticum
E3W1W9	E3W1W9	E3W1W9_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. stromaticum
E3W1X2	E3W1X2	E3W1X2_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. stromaticum

E3W1X3	E3W1X3	E3W1X3_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. stromaticum
E3W1X5	E3W1X5	E3W1X5_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. stromaticum
E3W1Y0	E3W1Y0	E3W1Y0_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. stromaticum
Q8NK25	Q8NK25	Q8NK25_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. stromaticum
Q8NK43	Q8NK43	Q8NK43_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. tawa
I6LDB5	I6LDB5	I6LDB5_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. tomentosum
Q53AR9	Q53AR9	Q53AR9_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. tomentosum
Q8NK24	Q8NK24	Q8NK24_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. tomentosum
I6LDB0	I6LDB0	I6LDB0_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. velutinum
I6LDB1	I6LDB1	I6LDB1_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. velutinum
I6LDB2	I6LDB2	I6LDB2_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. velutinum
I6LDB3	I6LDB3	I6LDB3_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. velutinum
I6LDB4	I6LDB4	I6LDB4_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. velutinum
Q53AS0	Q53AS0	Q53AS0_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. velutinum
A0A068BCB1	A0A068BCB1	A0A068BCB1_9HY PO	Chitinase (EC 3.2.1.14)	Quitinasa	T. vermipilum
E3W949	E3W949	E3W949_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. vermipilum
A0A0G2UFT3	A0A0G2UFT3	A0A0G2UFT3_HY PVI	Chitinase (EC 3.2.1.14)	Quitinasa	T. virens
A7LM82	A7LM82	A7LM82_HYPVI	Chitinase (EC 3.2.1.14)	Quitinasa	T. virens
B1PWE3	B1PWE3	B1PWE3_HYPVI	Chitinase (EC 3.2.1.14)	Quitinasa	T. virens

E3W1Z6	E3W1Z6	E3W1Z6_HYPVI	Chitinase (EC 3.2.1.14)	Quitinasa	T. virens
E3W1Z7	E3W1Z7	E3W1Z7_HYPVI	Chitinase (EC 3.2.1.14)	Quitinasa	T. virens
Q8NK40	Q8NK40	Q8NK40_HYPVI	Chitinase (EC 3.2.1.14)	Quitinasa	T. virens
G9MUY4	G9MUY4	G9MUY4_HYPVG	Chitinase (EC 3.2.1.14)	Quitinasa	T. virens
E2FMQ8	E2FMQ8	E2FMQ8_HYPRU	Chitinase (EC 3.2.1.14)	Quitinasa	T. viride
Q0VIM2	Q0VIM2	Q0VIM2_HYPRU	Chitinase (EC 3.2.1.14)	Quitinasa	T. viride
W0GGW8	W0GGW8	W0GGW8_HYPRU	Chitinase (EC 3.2.1.14)	Quitinasa	T. viride
Q5IS18	Q5IS18	Q5IS18_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. viride
Q5IS19	Q5IS19	Q5IS19_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. viride
Q5IS24	Q5IS24	Q5IS24_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. viride
Q0VIM3	Q0VIM3	Q0VIM3_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. viridescens
Q107X4	Q107X4	Q107X4_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T. voglmayrii
Q19AT1	Q19AT1	Q19AT1_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	T.yunnanense
A9LDS2	A9LDS2	A9LDS2_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	Trichoderma sp.
A9LDS3	A9LDS3	A9LDS3_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	Trichoderma sp.
A9LDS4	A9LDS4	A9LDS4_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	Trichoderma sp.
A9LDS5	A9LDS5	A9LDS5_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	Trichoderma sp.
Q8TG30	Q8TG30	Q8TG30_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	Trichoderma sp.
D9MWV9	D9MWV9	D9MWV9_9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	Trichoderma sp.

Q53AR8	Q53AR8	Q53AR8 9HYPO	Chitinase (EC 3.2.1.14)	Quitinasa	Trichoderma sp.
A0A024HW49	A0A024HW49	A0A024HW49_TRI HA	Chitinase 18-5	Quitinasa	T. harzianum
A0A395NXX5	A0A395NXX5	A0A395NXX5_TRI AR	Chitinase chi18-13	Quitinasa	T. arundinaceum
D6N0X7	D6N0X7	D6N0X7_9HYPO	Chitinase chi18-13 (EC 3.2.1.14)	Quitinasa	T. brevicompactum
D6N0X6	D6N0X6	D6N0X6_9HYPO	Chitinase chi18-13 (EC 3.2.1.14)	Quitinasa	T. ghanense
D6N0Y2	D6N0Y2	D6N0Y2_TRIHA	Chitinase chi18-13 (EC 3.2.1.14)	Quitinasa	T. harzianum
D6N0Y4	D6N0Y4	D6N0Y4_9HYPO	Chitinase chi18-13 (EC 3.2.1.14)	Quitinasa	T. minutisporum
D6N0Y5	D6N0Y5	D6N0Y5_9HYPO	Chitinase chi18-13 (EC 3.2.1.14)	Quitinasa	T. parapiluliferum
D6N0Y6	D6N0Y6	D6N0Y6_9HYPO	Chitinase chi18-13 (EC 3.2.1.14)	Quitinasa	T. piluliferum
D6N0Y0	D6N0Y0	D6N0Y0_HYPVI	Chitinase chi18-13 (EC 3.2.1.14)	Quitinasa	T. virens
D6N0X9	D6N0X9	D6N0X9_9HYPO	Chitinase chi18-13 (EC 3.2.1.14) (Glycoside hydrolase family 18 protein)	Quitinasa	T. citrinoviride
404205NDV2	404205NDV2	A0A395NDY2_TRI	Cytochrome p450	Citocromo P450	Tarundinacoum
AUASYSIND YZ	AUASYSIND Y Z	АК	monooxygenase	monooxygenasa	r. arunumaceum
A0A395NPM9	A0A395NPM9	A0A395NPM9_TRI AR	Cytochrome p450 monooxygenase	Citocromo P450 monooxygenasa	T. arundinaceum
A0A0U2ZHU5	A0A0U2ZHU5	A0A0U2ZHU5_9HY PO	Cytochrome P450 monooxygenase	Citocromo P450 monooxygenasa	T. brevicompactum

A0A0U3IP34	A0A0U3IP34	A0A0U3IP34_9HY PO	Cytochrome P450 monooxygenase	Citocromo P450 monooxygenasa	T. brevicompactum
A0A0U3SMI5	A0A0U3SMI5	A0A0U3SMI5_9HY PO	Cytochrome P450 monooxygenase	Citocromo P450 monooxygenasa	T. brevicompactum
G0LW90	G0LW90	G0LW90_9HYPO	Cytochrome P450 monooxygenase	Citocromo P450 monooxygenasa	T. brevicompactum
G0LWW2	G0LWW2	GOLWW2_9HYPO	Cytochrome P450 monooxygenase	Citocromo P450 monooxygenasa	T. brevicompactum
A0A2P4ZJQ6	A0A2P4ZJQ6	A0A2P4ZJQ6_9HY PO	Cytochrome P450 monooxygenase	Citocromo P450 monooxygenasa	T. gamsii
A0A1T3CP86	A0A1T3CP86	A0A1T3CP86_9HY PO	Cytochrome P450 monooxygenase	Citocromo P450 monooxygenasa	T. guizhouense
A0A8G0LG71	A0A8G0LG71	A0A8G0LG71_9HY PO	Cytochrome P450 monooxygenase	Citocromo P450 monooxygenasa	T. simmonsii
A0A8G0PB17	A0A8G0PB17	A0A8G0PB17_9HY PO	Cytochrome P450 monooxygenase	Citocromo P450 monooxygenasa	T. simmonsii
A0A8G0PMF6	A0A8G0PMF6	A0A8G0PMF6_9H YPO	Cytochrome P450 monooxygenase	Citocromo P450 monooxygenasa	T. simmonsii
G0KYB2	G0KYB2	TRI4_TRIAR	Cytochrome P450 monooxygenase TRI4 (EC 1) (Trichothecene biosynthesis protein 4)	Citocromo P450 monooxygenasa	T. arundinaceum
A0A395NBI0	A0A395NBI0	A0A395NBI0_TRIA R	Dipeptidase (EC 3.4.13.19)	Dipeptidasa	T. arundinaceum
A0A6V8QS59	A0A6V8QS59	A0A6V8QS59_9HY PO	Dipeptidase (EC 3.4.13.19)	Dipeptidasa	T. asperellum
A0A2T3YSL8	A0A2T3YSL8	A0A2T3YSL8_9HY PO	Dipeptidase (EC 3.4.13.19)	Dipeptidasa	T. asperellum
A0A2T4AYQ8	A0A2T4AYQ8	A0A2T4AYQ8_9HY PO	Dipeptidase (EC 3.4.13.19)	Dipeptidasa	T. citrinoviride
A0A2T4B0C2	A0A2T4B0C2	A0A2T4B0C2_9HY PO	Dipeptidase (EC 3.4.13.19)	Dipeptidasa	T. citrinoviride
------------	------------	----------------------	-------------------------------	-------------	--------------------
A0A0W7VIH6	A0A0W7VIH6	A0A0W7VIH6_9HY PO	Dipeptidase (EC 3.4.13.19)	Dipeptidasa	T. gamsii
A0A1T3CFW0	A0A1T3CFW0	A0A1T3CFW0_9H YPO	Dipeptidase (EC 3.4.13.19)	Dipeptidasa	T. guizhouense
A0A1T3CYE1	A0A1T3CYE1	A0A1T3CYE1_9HY PO	Dipeptidase (EC 3.4.13.19)	Dipeptidasa	T. guizhouense
A0A0F9X817	A0A0F9X817	A0A0F9X817_TRIH A	Dipeptidase (EC 3.4.13.19)	Dipeptidasa	T. harzianum
A0A0F9XK66	A0A0F9XK66	A0A0F9XK66_TRI HA	Dipeptidase (EC 3.4.13.19)	Dipeptidasa	T. harzianum
A0A2K0TXT7	A0A2K0TXT7	A0A2K0TXT7_TRI HA	Dipeptidase (EC 3.4.13.19)	Dipeptidasa	T. harzianum
A0A2K0UBL2	A0A2K0UBL2	A0A2K0UBL2_TRI HA	Dipeptidase (EC 3.4.13.19)	Dipeptidasa	T. harzianum
A0A2N1LT03	A0A2N1LT03	A0A2N1LT03_TRI HA	Dipeptidase (EC 3.4.13.19)	Dipeptidasa	T. harzianum
A0A2N1LVK5	A0A2N1LVK5	A0A2N1LVK5_TRI HA	Dipeptidase (EC 3.4.13.19)	Dipeptidasa	T. harzianum
A0A2T4A624	A0A2T4A624	A0A2T4A624_TRIH A	Dipeptidase (EC 3.4.13.19)	Dipeptidasa	T. harzianum
A0A2T4A7E0	A0A2T4A7E0	A0A2T4A7E0_TRI HA	Dipeptidase (EC 3.4.13.19)	Dipeptidasa	T. harzianum
A0A2T4C194	A0A2T4C194	A0A2T4C194_TRIL O	Dipeptidase (EC 3.4.13.19)	Dipeptidasa	T. longibrachiatum
A0A2T4CE74	A0A2T4CE74	A0A2T4CE74_TRIL O	Dipeptidase (EC 3.4.13.19)	Dipeptidasa	T. longibrachiatum
A0A2H2ZQC3	A0A2H2ZQC3	A0A2H2ZQC3_TRI PA	Dipeptidase (EC 3.4.13.19)	Dipeptidasa	T. parareesei
A0A2H2ZVX8	A0A2H2ZVX8	A0A2H2ZVX8_TRI PA	Dipeptidase (EC 3.4.13.19)	Dipeptidasa	T. parareesei
A0A8G0LBZ2	A0A8G0LBZ2	A0A8G0LBZ2_9HY PO	Dipeptidase (EC 3.4.13.19)	Dipeptidasa	T. simmonsii
A0A8G0LU93	A0A8G0LU93	A0A8G0LU93_9HY PO	Dipeptidase (EC 3.4.13.19)	Dipeptidasa	T. simmonsii
A0A8G0PIN6	A0A8G0PIN6	A0A8G0PIN6_9HY PO	Dipeptidase (EC 3.4.13.19)	Dipeptidasa	T. simmonsii

A0A8G0PL85	A0A8G0PL85	A0A8G0PL85_9HY PO	Dipeptidase (EC 3.4.13.19)	Dipeptidasa	T. simmonsii
400100	400100		Dipeptidase (EC	Diportidora	Thuirops
Aggibg	Aggibg		5.4.15.19)	Dipeptidasa	T. VITENS
A0A6B9XJV7	A0A6B9XJV7	HA	Ech42	Quitinasa	T. harzianum
		A0A6B9XKU4_TRI			
A0A6B9XKU4	A0A6B9XKU4	HA	Ech42	Quitinasa	T. harzianum
G8GV19	G8GV19	G8GV19_HYPAT	Endochitinase (EC 3.2.1.14)	Quitinasa	T. atriviridae
G8GV/20	G8G\/20		Endochitinase (EC	Quitinasa	T atriviridae
000120	000720	000V20_1111 A1	3.2.1.14)	Quinnasa	
			Endochitinase 33 (EC 3.2.1.14) (33		
012712	012713		kDa endochitinase)	Quitinasa	T barzianum
	Q12715		(Chillinase 55)	Quitinasa	1. Παιζιαπυπ
B7SLA8	B7SLA8	B7SLA8_9HYPO	Endochitinase 42	Quitinasa	T. aethiopicum
Q50JC3	Q50JC3	Q50JC3_9HYPO	Endochitinase 42	Quitinasa	T. asperellum
Q9HDE4	Q9HDE4	Q9HDE4 9HYPO	Endochitinase 42	Quitinasa	T. asperellum
Q9HDF0	Q9HDF0	Q9HDF0_HYPAT	Endochitinase 42	Quitinasa	T. atriviridae
Q9HDP2	Q9HDP2	Q9HDP2_TRIHA	Endochitinase 42	Quitinasa	T. harzianum
B7SL97	B7SL97	B7SL97_TRILO	Endochitinase 42	Quitinasa	T. longibrachiatum
D751.00	B761.00		Endochitinggo 42	Quitingge	Tlangibraghistum
B75L99	B75L99	B75L99_TRILO	Endochiunase 42	Quilinasa	
B7SLA9	B7SLA9	B7SLA9_TRILO	Endochitinase 42	Quitinasa	T. longibrachiatum
B7SLB0	B7SLB0	B7SLB0_TRILO	Endochitinase 42	Quitinasa	T. longibrachiatum
B7SLB1	B7SLB1	B7SLB1_TRILO	Endochitinase 42	Quitinasa	T. longibrachiatum
<u> </u>					
Q50JC2	Q50JC2	Q50JC2_9HYPO	Endochitinase 42	Quitinasa	T. spirale

Q50JC1	Q50JC1	Q50JC1_HYPVI	Endochitinase 42	Quitinasa	T. virens
Q9HF01	Q9HF01	Q9HF01_HYPVI	Endochitinase 42	Quitinasa	T. virens
Q50JC5	Q50JC5	Q50JC5_9HYPO	Endochitinase 42	Quitinasa	Trichoderma sp.
Q50JC4	Q50JC4	Q50JC4_9HYPO	Endochitinase 42	Quitinasa	Trichoderma sp.
Q50JC0	Q50JC0	Q50JC0_9HYPO	Endochitinase 42	Quitinasa	Trichoderma sp.
P48827	P48827	CHI42_TRIHA	Endochitinase 42 (EC 3.2.1.14) (42 kDa endochitinase) (Chitinase 42)	Quitinasa	T. harzianum
A0A1T3CY26	A0A1T3CY26	A0A1T3CY26_9HY PO	Endopolygalacturon ase	Poligalacturonasa	T. guizhouense
A0A024S1V1	A0A024S1V1	A0A024S1V1_HYP JR	Endopolygalacturon ase	Poligalacturonasa	T. reseei
W8JD24	W8JD24	W8JD24_HYPVI	Endopolygalacturon ase	Poligalacturonasa	T. virens
W8JE35	W8JE35	W8JE35_HYPVI	Endopolygalacturon ase	Poligalacturonasa	T. virens
B7ZEN3	B7ZEN3	B7ZEN3_TRIHA	Endopolygalacturon ase (EC 3.2.1.15)	Poligalacturonasa	T. harzianum
A0A6V8R5E5	A0A6V8R5E5	A0A6V8R5E5_9HY PO	Endopolygalacturon ase 1	Poligalacturonasa	T. asperellum
A0A2K0TSM7	A0A2K0TSM7	A0A2K0TSM7_9HY PO	Endopolygalacturon ase 1	Poligalacturonasa	T. gamsii
A0A2P4ZK61	A0A2P4ZK61	A0A2P4ZK61_9HY PO	Endopolygalacturon ase 1	Poligalacturonasa	T. gamsii
A0A6V8R602	A0A6V8R602	A0A6V8R602_9HY PO	Endopolygalacturon ase AN8327	Poligalacturonasa	T. asperellum
A0A395NZP8	A0A395NZP8	A0A395NZP8_TRI AR	Glucoamylase (EC 3.2.1.3) (1,4-alpha- D-glucan glucohydrolase) (Glucan 1,4-alpha- glucosidase)	Glucoamilasa	T. arundinaceum

A0A6V8QQP7	A0A6V8QQP7	A0A6V8QQP7_9H YPO	Glucoamylase (EC 3.2.1.3) (1,4-alpha- D-glucan glucohydrolase) (Glucan 1,4-alpha- glucosidase)	Glucoamilasa	T. asperellum
			Glucoomylaco (EC		
A0A6V8RCF6	A0A6V8RCF6	A0A6V8RCF6_9HY PO	3.2.1.3) (1,4-alpha- D-glucan glucohydrolase) (Glucan 1,4-alpha- glucosidase)	Glucoamilasa	T. asperellum
A0A2T3YUD7	A0A2T3YUD7	A0A2T3YUD7_9HY PO	Glucoamylase (EC 3.2.1.3) (1,4-alpha- D-glucan glucohydrolase) (Glucan 1,4-alpha- glucosidase)	Glucoamilasa	T. asperellum
4042737522	A042T37E22	A0A2T3ZF22_9HY	Glucoamylase (EC 3.2.1.3) (1,4-alpha- D-glucan glucohydrolase) (Glucan 1,4-alpha- glucosidase)	Glucoamilasa	T. asperellum
AUA2132122	AUA2132122	FO	giucosidase)	Glucoarniasa	
G9NJG0	G9NJG0	G9NJG0_HYPAI	Glucoamylase (EC 3.2.1.3) (1,4-alpha- D-glucan glucohydrolase) (Glucan 1,4-alpha- glucosidase)	Glucoamilasa	T. atriviridae

G9P135	G9P135	G9P135_HYPAI	Glucoamylase (EC 3.2.1.3) (1,4-alpha- D-glucan glucohydrolase) (Glucan 1,4-alpha- glucosidase)	Glucoamilasa	T. atriviridae
A0A2T4BDU8	A0A2T4BDU8	A0A2T4BDU8_9HY PO	Glucoamylase (EC 3.2.1.3) (1,4-alpha- D-glucan glucohydrolase) (Glucan 1,4-alpha- glucosidase)	Glucoamilasa	T. citrinoviride
A0A0W7VHS2	A0A0W7VHS2	A0A0W7VHS2_9H YPO	Glucoamylase (EC 3.2.1.3) (1,4-alpha- D-glucan glucohydrolase) (Glucan 1,4-alpha- glucosidase)	Glucoamilasa	T. gamsii
A0A2K0TDH2	A0A2K0TDH2	A0A2K0TDH2_9HY PO	Glucoamylase (EC 3.2.1.3) (1,4-alpha- D-glucan glucohydrolase) (Glucan 1,4-alpha- glucosidase)	Glucoamilasa	T. gamsii
A0A2P4ZNT5	A0A2P4ZNT5	A0A2P4ZNT5_9HY PO	Glucoamylase (EC 3.2.1.3) (1,4-alpha- D-glucan glucohydrolase) (Glucan 1,4-alpha- glucosidase)	Glucoamilasa	T. gamsii

A0A2P4ZX96	A0A2P4ZX96	A0A2P4ZX96_9HY PO	Glucoamylase (EC 3.2.1.3) (1,4-alpha- D-glucan glucohydrolase) (Glucan 1,4-alpha- glucosidase)	Glucoamilasa	T. gamsii
A0A1T3CN22	A0A1T3CN22	A0A1T3CN22_9HY PO	Glucoamylase (EC 3.2.1.3) (1,4-alpha- D-glucan glucohydrolase) (Glucan 1,4-alpha- glucosidase)	Glucoamilasa	T. guizhouense
A0A0G0A7Y5	A0A0G0A7Y5	A0A0G0A7Y5_TRI HA	Glucoamylase (EC 3.2.1.3) (1,4-alpha- D-glucan glucohydrolase) (Glucan 1,4-alpha- glucosidase)	Glucoamilasa	T. harzianum
A0A2K0TZ27	A0A2K0TZ27	A0A2K0TZ27_TRI HA	Glucoamylase (EC 3.2.1.3) (1,4-alpha- D-glucan glucohydrolase) (Glucan 1,4-alpha- glucosidase)	Glucoamilasa	T. harzianum
A0A2N1LRW5	A0A2N1LRW5	A0A2N1LRW5_TRI HA	Glucoamylase (EC 3.2.1.3) (1,4-alpha- D-glucan glucohydrolase) (Glucan 1,4-alpha- glucosidase)	Glucoamilasa	T. harzianum

Q599K8	Q599K8	Q599K8_TRIHA	Glucoamylase (EC 3.2.1.3) (1,4-alpha- D-glucan glucohydrolase) (Glucan 1,4-alpha- glucosidase)	Glucoamilasa	T. harzianum
			Olympical (FO		
A0A2T4AIL4	A0A2T4AIL4	A0A2T4AIL4_TRIH A	Glucoamylase (EC 3.2.1.3) (1,4-alpha- D-glucan glucohydrolase) (Glucan 1,4-alpha- glucosidase)	Glucoamilasa	T. harzianum
A0A2T4CCG9	A0A2T4CCG9	A0A2T4CCG9_TRI LO	Glucoamylase (EC 3.2.1.3) (1,4-alpha- D-glucan glucohydrolase) (Glucan 1,4-alpha- glucosidase)	Glucoamilasa	T. longibrachiatum
A042H347\/9	Δ042H347\/9	A0A2H3A7V9_TRI	Glucoamylase (EC 3.2.1.3) (1,4-alpha- D-glucan glucohydrolase) (Glucan 1,4-alpha- glucosidase)	Glucoamilasa	Tinarareesei
			glucosidasey	Glacoanniasa	
A0A024SN40	A0A024SN40	A0A024SN40_HYP JR	Glucoamylase (EC 3.2.1.3) (1,4-alpha- D-glucan glucohydrolase) (Glucan 1,4-alpha- glucosidase)	Glucoamilasa	T. reseei

G0R866	G0R866	G0R866 HYPJQ	Glucoamylase (EC 3.2.1.3) (1,4-alpha- D-glucan glucohydrolase) (Glucan 1,4-alpha- glucosidase)	Glucoamilasa	T. reseei
			glacooldaco	Choodininada	11100001
A0A8G0PG76	A0A8G0PG76	A0A8G0PG76_9HY PO	Glucoamylase (EC 3.2.1.3) (1,4-alpha- D-glucan glucohydrolase) (Glucan 1,4-alpha- glucosidase)	Glucoamilasa	T. simmonsii
G9MM76	G9MM76	G9MM76_HYPVG	Glucoamylase (EC 3.2.1.3) (1,4-alpha- D-glucan glucohydrolase) (Glucan 1,4-alpha- glucosidase)	Glucoamilasa	T. virens
Q8TFF4	Q8TFF4	Q8TFF4_TRIHA	Glucose transporter	Glucosa transporter	T. harzianum
A0A1T3CBJ7	A0A1T3CBJ7	A0A1T3CBJ7_9HY PO	Glutathione S transferase	Glutatión S transferasa	T. guizhouense
A0A2H2ZHU4	A0A2H2ZHU4	A0A2H2ZHU4_TRI PA	Glutathione S transferase	Glutatión S transferasa	T. parareesei
A0A395N9Q0	A0A395N9Q0	A0A395N9Q0_TRI AR	Glutathione s- transferase	Glutatión S transferasa	T. arundinaceum
A0A395NAA8	A0A395NAA8	A0A395NAA8_TRI AR	Glutathione s- transferase	Glutatión S transferasa	T. arundinaceum
A0A395NHC6	A0A395NHC6	A0A395NHC6_TRI AR	Glutathione s- transferase	Glutatión S transferasa	T. arundinaceum
A0A395NHQ8	A0A395NHQ8	A0A395NHQ8_TRI AR	Glutathione s- transferase	Glutatión S transferasa	T. arundinaceum
A0A395NHR1	A0A395NHR1	A0A395NHR1_TRI AR	Glutathione s- transferase	Glutatión S transferasa	T. arundinaceum
A0A395NIW1	A0A395NIW1	A0A395NIW1_TRI AR	Glutathione s- transferase	Glutatión S transferasa	T. arundinaceum

A0A395NJ78	A0A395NJ78	A0A395NJ78_TRIA R	Glutathione s- transferase	Glutatión S transferasa	T. arundinaceum
A0A395NKG9	A0A395NKG9	A0A395NKG9_TRI AR	Glutathione s- transferase	Glutatión S transferasa	T. arundinaceum
A0A395NN47	A0A395NN47	A0A395NN47_TRI AR	Glutathione s- transferase	Glutatión S transferasa	T. arundinaceum
A0A395NNK9	A0A395NNK9	A0A395NNK9_TRI AR	Glutathione s- transferase	Glutatión S transferasa	T. arundinaceum
A0A395NQG1	A0A395NQG1	A0A395NQG1_TRI AR	Glutathione s- transferase	Glutatión S transferasa	T. arundinaceum
A0A395NQX5	A0A395NQX5	A0A395NQX5_TRI AR	Glutathione s- transferase	Glutatión S transferasa	T. arundinaceum
A0A395NYL1	A0A395NYL1	A0A395NYL1_TRI AR	Glutathione s- transferase	Glutatión S transferasa	T. arundinaceum
A0A395P0V9	A0A395P0V9	A0A395P0V9_TRIA R	Glutathione s- transferase	Glutatión S transferasa	T. arundinaceum
A0A6V8R1G5	A0A6V8R1G5	A0A6V8R1G5_9HY PO	Glutathione S- transferase	Glutatión S transferasa	T. asperellum
A0A2T4AYL1	A0A2T4AYL1	A0A2T4AYL1_9HY PO	Glutathione S- transferase	Glutatión S transferasa	T. citrinoviride
A0A2T4AYQ4	A0A2T4AYQ4	A0A2T4AYQ4_9HY PO	Glutathione S- transferase	Glutatión S transferasa	T. citrinoviride
A0A2T4AYS9	A0A2T4AYS9	A0A2T4AYS9_9HY PO	Glutathione S- transferase	Glutatión S transferasa	T. citrinoviride
A0A2T4B2M0	A0A2T4B2M0	A0A2T4B2M0_9HY PO	Glutathione S- transferase	Glutatión S transferasa	T. citrinoviride
A0A2T4B5F2	A0A2T4B5F2	A0A2T4B5F2_9HY PO	Glutathione S- transferase	Glutatión S transferasa	T. citrinoviride
A0A2T4BA51	A0A2T4BA51	A0A2T4BA51_9HY PO	Glutathione S- transferase	Glutatión S transferasa	T. citrinoviride
A0A2T4BBT7	A0A2T4BBT7	A0A2T4BBT7_9HY PO	Glutathione S- transferase	Glutatión S transferasa	T. citrinoviride
A0A2T4BC54	A0A2T4BC54	A0A2T4BC54_9HY PO	Glutathione S- transferase	Glutatión S transferasa	T. citrinoviride
A0A2T4BCC8	A0A2T4BCC8	A0A2T4BCC8_9HY PO	Glutathione S- transferase	Glutatión S transferasa	T. citrinoviride
A0A2T4BE86	A0A2T4BE86	A0A2T4BE86_9HY PO	Glutathione S- transferase	Glutatión S transferasa	T. citrinoviride

A0A2T4BFL8	A0A2T4BFL8	A0A2T4BFL8_9HY PO	Glutathione S- transferase	Glutatión S transferasa	T. citrinoviride
A0A2T4BI28	A0A2T4BI28	A0A2T4BI28_9HYP O	Glutathione S- transferase	Glutatión S transferasa	T. citrinoviride
A0A2P4Z6U2	A0A2P4Z6U2	A0A2P4Z6U2_9HY PO	Glutathione S- transferase	Glutatión S transferasa	T. gamsii
A0A2P4Z7U3	A0A2P4Z7U3	A0A2P4Z7U3_9HY PO	Glutathione S- transferase	Glutatión S transferasa	T. gamsii
A0A2P4Z8F9	A0A2P4Z8F9	A0A2P4Z8F9_9HY PO	Glutathione S- transferase	Glutatión S transferasa	T. gamsii
A0A2P4ZD22	A0A2P4ZD22	A0A2P4ZD22_9HY PO	Glutathione S- transferase	Glutatión S transferasa	T. gamsii
A0A2P4ZFQ0	A0A2P4ZFQ0	A0A2P4ZFQ0_9HY PO	Glutathione S- transferase	Glutatión S transferasa	T. gamsii
A0A2P4ZG15	A0A2P4ZG15	A0A2P4ZG15_9HY PO	Glutathione S- transferase	Glutatión S transferasa	T. gamsii
A0A2P4ZGF3	A0A2P4ZGF3	A0A2P4ZGF3_9HY PO	Glutathione S- transferase	Glutatión S transferasa	T. gamsii
A0A2P4ZHH6	A0A2P4ZHH6	A0A2P4ZHH6_9HY PO	Glutathione S- transferase	Glutatión S transferasa	T. gamsii
A0A2P4ZIU2	A0A2P4ZIU2	A0A2P4ZIU2_9HY PO	Glutathione S- transferase	Glutatión S transferasa	T. gamsii
A0A2P4ZJJ5	A0A2P4ZJJ5	A0A2P4ZJJ5_9HY PO	Glutathione S- transferase	Glutatión S transferasa	T. gamsii
A0A2P4ZJV0	A0A2P4ZJV0	A0A2P4ZJV0_9HY PO	Glutathione S- transferase	Glutatión S transferasa	T. gamsii
A0A2P4ZS81	A0A2P4ZS81	A0A2P4ZS81_9HY PO	Glutathione S- transferase	Glutatión S transferasa	T. gamsii
A0A1T3C5H2	A0A1T3C5H2	A0A1T3C5H2_9HY PO	Glutathione S- transferase	Glutatión S transferasa	T. guizhouense
A0A1T3CDC0	A0A1T3CDC0	A0A1T3CDC0_9HY PO	Glutathione S- transferase	Glutatión S transferasa	T. guizhouense
A0A1T3CGJ3	A0A1T3CGJ3	A0A1T3CGJ3_9HY PO	Glutathione S- transferase	Glutatión S transferasa	T. guizhouense
A0A1T3CHS9	A0A1T3CHS9	A0A1T3CHS9_9HY PO	Glutathione S- transferase	Glutatión S transferasa	T. guizhouense
A0A1T3CJC8	A0A1T3CJC8	A0A1T3CJC8_9HY PO	Glutathione S- transferase	Glutatión S transferasa	T. guizhouense

A0A1T3CJS4	A0A1T3CJS4	A0A1T3CJS4_9HY PO	Glutathione S- transferase	Glutatión S transferasa	T. guizhouense
A0A1T3CLJ1	A0A1T3CLJ1	A0A1T3CLJ1_9HY PO	Glutathione S- transferase	Glutatión S transferasa	T. guizhouense
A0A1T3CNZ2	A0A1T3CNZ2	A0A1T3CNZ2_9HY PO	Glutathione S- transferase	Glutatión S transferasa	T. guizhouense
A0A1T3CNZ7	A0A1T3CNZ7	A0A1T3CNZ7_9HY PO	Glutathione S- transferase	Glutatión S transferasa	T. guizhouense
A0A1T3CRV9	A0A1T3CRV9	A0A1T3CRV9_9HY PO	Glutathione S- transferase	Glutatión S transferasa	T. guizhouense
A0A1T3CV74	A0A1T3CV74	A0A1T3CV74_9HY PO	Glutathione S- transferase	Glutatión S transferasa	T. guizhouense
A0A1T3CVX7	A0A1T3CVX7	A0A1T3CVX7_9HY PO	Glutathione S- transferase	Glutatión S transferasa	T. guizhouense
A0A1T3CY20	A0A1T3CY20	A0A1T3CY20_9HY PO	Glutathione S- transferase	Glutatión S transferasa	T. guizhouense
A0A1T3CZ90	A0A1T3CZ90	A0A1T3CZ90_9HY PO	Glutathione S- transferase	Glutatión S transferasa	T. guizhouense
A0A1T3CZP6	A0A1T3CZP6	A0A1T3CZP6_9HY PO	Glutathione S- transferase	Glutatión S transferasa	T. guizhouense
A0A1T3D0S8	A0A1T3D0S8	A0A1T3D0S8_9HY PO	Glutathione S- transferase	Glutatión S transferasa	T. guizhouense
A0A0F9Z864	A0A0F9Z864	A0A0F9Z864_TRIH A	Glutathione S- transferase	Glutatión S transferasa	T. harzianum
A0A0F9ZMY8	A0A0F9ZMY8	A0A0F9ZMY8_TRI HA	Glutathione S- transferase	Glutatión S transferasa	T. harzianum
A0A0F9ZND8	A0A0F9ZND8	A0A0F9ZND8_TRI HA	Glutathione S- transferase	Glutatión S transferasa	T. harzianum
A0A0G0A326	A0A0G0A326	A0A0G0A326_TRI HA	Glutathione S- transferase	Glutatión S transferasa	T. harzianum
A0A0G0APE0	A0A0G0APE0	A0A0G0APE0_TRI HA	Glutathione S- transferase	Glutatión S transferasa	T. harzianum
D7RJV6	D7RJV6	D7RJV6_TRIHA	Glutathione S- transferase	Glutatión S transferasa	T. harzianum
A0A2T4BT16	A0A2T4BT16	A0A2T4BT16_TRIL O	Glutathione S- transferase	Glutatión S transferasa	T. longibrachiatum
A0A2T4BYP2	A0A2T4BYP2	A0A2T4BYP2_TRI LO	Glutathione S- transferase	Glutatión S transferasa	T. longibrachiatum

A0A2T4C020	A0A2T4C020	A0A2T4C020_TRIL O	Glutathione S- transferase	Glutatión S transferasa	T. longibrachiatum
A0A2T4C146	A0A2T4C146	A0A2T4C146_TRIL O	Glutathione S- transferase	Glutatión S transferasa	T. longibrachiatum
A0A2T4C154	A0A2T4C154	A0A2T4C154_TRIL O	Glutathione S- transferase	Glutatión S transferasa	T. longibrachiatum
A0A2T4C199	A0A2T4C199	A0A2T4C199_TRIL O	Glutathione S- transferase	Glutatión S transferasa	T. longibrachiatum
A0A2T4C211	A0A2T4C211	A0A2T4C211_TRIL O	Glutathione S- transferase	Glutatión S transferasa	T. longibrachiatum
A0A2T4C3Q9	A0A2T4C3Q9	A0A2T4C3Q9_TRI LO	Glutathione S- transferase	Glutatión S transferasa	T. longibrachiatum
A0A2T4C536	A0A2T4C536	A0A2T4C536_TRIL O	Glutathione S- transferase	Glutatión S transferasa	T. longibrachiatum
A0A2T4CC31	A0A2T4CC31	A0A2T4CC31_TRI LO	Glutathione S- transferase	Glutatión S transferasa	T. longibrachiatum
A0A2H2YUX7	A0A2H2YUX7	A0A2H2YUX7_TRI PA	Glutathione S- transferase	Glutatión S transferasa	T. parareesei
A0A2H2YWQ4	A0A2H2YWQ4	A0A2H2YWQ4_TRI PA	Glutathione S- transferase	Glutatión S transferasa	T. parareesei
A0A2H2Z6L7	A0A2H2Z6L7	A0A2H2Z6L7_TRIP A	Glutathione S- transferase	Glutatión S transferasa	T. parareesei
A0A2H2Z8Q9	A0A2H2Z8Q9	A0A2H2Z8Q9_TRI PA	Glutathione S- transferase	Glutatión S transferasa	T. parareesei
A0A2H2ZNP7	A0A2H2ZNP7	A0A2H2ZNP7_TRI PA	Glutathione S- transferase	Glutatión S transferasa	T. parareesei
A0A2H2ZW55	A0A2H2ZW55	A0A2H2ZW55_TRI PA	Glutathione S- transferase	Glutatión S transferasa	T. parareesei
A0A8G0L7M9	A0A8G0L7M9	A0A8G0L7M9_9HY PO	Glutathione S- transferase	Glutatión S transferasa	T. simmonsii
A0A8G0L8W8	A0A8G0L8W8	A0A8G0L8W8_9H YPO	Glutathione S- transferase	Glutatión S transferasa	T. simmonsii
A0A8G0LJ96	A0A8G0LJ96	A0A8G0LJ96_9HY PO	Glutathione S- transferase	Glutatión S transferasa	T. simmonsii
A0A8G0LTF3	A0A8G0LTF3	A0A8G0LTF3_9HY PO	Glutathione S- transferase	Glutatión S transferasa	T. simmonsii
A0A8G0PEY8	A0A8G0PEY8	A0A8G0PEY8_9HY PO	Glutathione S- transferase	Glutatión S transferasa	T. simmonsii

A0A8G0PIC5	A0A8G0PIC5	A0A8G0PIC5_9HY PO	Glutathione S- transferase	Glutatión S transferasa	T. simmonsii
A0A8G0PMU9	A0A8G0PMU9	A0A8G0PMU9_9H YPO	Glutathione S- transferase	Glutatión S transferasa	T. simmonsii
A9Q1E2	A9Q1E2	A9Q1E2_HYPVI	Glutathione S- transferase	Glutatión S transferasa	T. virens
D2JPI9	D2JPI9	D2JPI9_HYPVI	Glutathione S- transferase	Glutatión S transferasa	T. virens
A0A6V8QMJ2	A0A6V8QMJ2	A0A6V8QMJ2_9HY PO	Glutathione S- transferase 1	Glutatión S transferasa	T. asperellum
A0A6V8R7H1	A0A6V8R7H1	A0A6V8R7H1_9HY PO	Glutathione S- transferase 1	Glutatión S transferasa	T. asperellum
A0A6V8R7P5	A0A6V8R7P5	A0A6V8R7P5_9HY PO	Glutathione S- transferase 1	Glutatión S transferasa	T. asperellum
A0A395NX86	A0A395NX86	A0A395NX86_TRI AR	Glutathione s- transferase gst3	Glutatión S transferasa	T. arundinaceum
A0A1T3CYU8	A0A1T3CYU8	A0A1T3CYU8_9HY PO	Glutathione S- transferase Gst3	Glutatión S transferasa	T. guizhouense
A0A8G0PK94	A0A8G0PK94	A0A8G0PK94_9HY PO	Glutathione S- transferase Gst3	Glutatión S transferasa	T. simmonsii
A0A2P4ZU61	A0A2P4ZU61	A0A2P4ZU61_9HY PO	Glutathione S- transferase GstA	Glutatión S transferasa	T. gamsii
A0A1T3CK11	A0A1T3CK11	A0A1T3CK11_9HY PO	Glutathione S- transferase II	Glutatión S transferasa	T. guizhouense
A0A2T3Z5W5	A0A2T3Z5W5	A0A2T3Z5W5_9HY PO	Glutathione S- transferase kappa (EC 2.5.1.18)	Glutatión S transferasa	T. asperellum
A0A6V8R7X8	A0A6V8R7X8	A0A6V8R7X8_9HY 	Glutathione S- transferase P	Glutatión S transferasa	T. asperellum
A0A6V8QTW4	A0A6V8QTW4	A0A6V8QTW4_9H YPO	Glutathione S- transferase PM239X14	Glutatión S transferasa	T. asperellum
A0A6V8QJU4	A0A6V8QJU4	A0A6V8QJU4_9HY PO	Glutathione S- transferase U2	Glutatión S transferasa	T. asperellum

A0A2P4ZGS5	A0A2P4ZGS5	A0A2P4ZGS5_9HY PO	Glutathione S- transferase-2	Glutatión S transferasa	T. gamsii
A0A2P4ZX50	A0A2P4ZX50	A0A2P4ZX50_9HY PO	Glutathione S- transferase-2	Glutatión S transferasa	T. gamsii
A0A1T3C9I5	A0A1T3C9I5	A0A1T3C9I5_9HY PO	Glutathione-S- transferase	Glutatión S transferasa	T. guizhouense
A0A1T3CHS8	A0A1T3CHS8	A0A1T3CHS8_9HY PO	Glutathione-S- transferase	Glutatión S transferasa	T. guizhouense
A0A1T3CIV9	A0A1T3CIV9	A0A1T3CIV9_9HY PO	Glutathione-S- transferase	Glutatión S transferasa	T. guizhouense
A0A1T3CTZ2	A0A1T3CTZ2	A0A1T3CTZ2_9HY PO	Glutathione-S- transferase	Glutatión S transferasa	T. guizhouense
A0A1T3CWG5	A0A1T3CWG5	A0A1T3CWG5_9H YPO	Glutathione-S- transferase	Glutatión S transferasa	T. guizhouense
A0A1T3D1B1	A0A1T3D1B1	A0A1T3D1B1_9HY PO	Glutathione-S- transferase	Glutatión S transferasa	T. guizhouense
A0A2H2ZGK0	A0A2H2ZGK0	A0A2H2ZGK0_TRI PA	Glutathione-S- transferase	Glutatión S transferasa	T. parareesei
A0A2H2ZR53	A0A2H2ZR53	A0A2H2ZR53_TRI PA	Glutathione-S- transferase	Glutatión S transferasa	T. parareesei
A0A2H2ZRD5	A0A2H2ZRD5	A0A2H2ZRD5_TRI PA	Glutathione-S- transferase	Glutatión S transferasa	T. parareesei
A0A2H2ZRE2	A0A2H2ZRE2	A0A2H2ZRE2_TRI PA	Glutathione-S- transferase	Glutatión S transferasa	T. parareesei
A0A8G0L3R0	A0A8G0L3R0	A0A8G0L3R0_9HY PO	Glutathione-S- transferase	Glutatión S transferasa	T. simmonsii
A0A8G0L8F8	A0A8G0L8F8	A0A8G0L8F8_9HY PO	Glutathione-S- transferase	Glutatión S transferasa	T. simmonsii
A0A8G0L8Y4	A0A8G0L8Y4	A0A8G0L8Y4_9HY PO	Glutathione-S- transferase	Glutatión S transferasa	T. simmonsii
A0A8G0LLU3	A0A8G0LLU3	A0A8G0LLU3_9HY PO	Glutathione-S- transferase	Glutatión S transferasa	T. simmonsii
A0A8G0PHM6	A0A8G0PHM6	A0A8G0PHM6_9H YPO	Glutathione-S- transferase	Glutatión S transferasa	T. simmonsii
Q15K91	Q15K91	Q15K91_9HYPO	Hydrophobin 1	Hidrofobina	T. asperellum
A0A1S6Q8L9	A0A1S6Q8L9	A0A1S6Q8L9_9HY PO	Non-ribosomal peptide synthetase	Péptido sintetasa	T. aggressivum

		A0A395NFA6_TRI	Non-ribosomal		
A0A395NFA6	A0A395NFA6	AR	peptide synthetase	Péptido sintetasa	T. arundinaceum
A0A395NL37	A0A395NL37	A0A395NL37_TRIA R	Non-ribosomal peptide synthetase	Péptido sintetasa	T. arundinaceum
A0A395NSU9	A0A395NSU9	A0A395NSU9_TRI AR	Non-ribosomal peptide synthetase	Péptido sintetasa	T. arundinaceum
A0A395NUT1	A0A395NUT1	A0A395NUT1_TRI AR	Non-ribosomal peptide synthetase	Péptido sintetasa	T. arundinaceum
A0A395NWA1	A0A395NWA1	A0A395NWA1_TRI AR	Non-ribosomal peptide synthetase	Péptido sintetasa	T. arundinaceum
A0A395NY74	A0A395NY74	A0A395NY74_TRI AR	Non-ribosomal peptide synthetase	Péptido sintetasa	T. arundinaceum
G9NE11	G9NE11	G9NE11_HYPAI	Non-ribosomal peptide synthetase	Péptido sintetasa	T. atriviridae
G9NFP0	G9NFP0	G9NFP0_HYPAI	Non-ribosomal peptide synthetase	Péptido sintetasa	T. atriviridae
G9NS15	G9NS15	G9NS15_HYPAI	Non-ribosomal peptide synthetase	Péptido sintetasa	T. atriviridae
G9NT96	G9NT96	G9NT96_HYPAI	Non-ribosomal peptide synthetase	Péptido sintetasa	T. atriviridae
G9NTI2	G9NTI2	G9NTI2_HYPAI	Non-ribosomal peptide synthetase	Péptido sintetasa	T. atriviridae
G9NTI3	G9NTI3	G9NTI3_HYPAI	Non-ribosomal peptide synthetase	Péptido sintetasa	T. atriviridae
G9NUS9	G9NUS9	G9NUS9_HYPAI	Non-ribosomal peptide synthetase	Péptido sintetasa	T. atriviridae
G9NX17	G9NX17	G9NX17_HYPAI	Non-ribosomal peptide synthetase	Péptido sintetasa	T. atriviridae

Ē

ī

G9P716	G9P716	G9P716_HYPAI	Non-ribosomal peptide synthetase	Péptido sintetasa	T. atriviridae
G9P8S7	G9P8S7	G9P8S7_HYPAI	Non-ribosomal peptide synthetase	Péptido sintetasa	T. atriviridae
G9PC73	G9PC73	G9PC73_HYPAI	Non-ribosomal peptide synthetase	Péptido sintetasa	T. atriviridae
G9PC74	G9PC74	G9PC74_HYPAI	Non-ribosomal peptide synthetase	Péptido sintetasa	T. atriviridae
G9PC75	G9PC75	G9PC75_HYPAI	Non-ribosomal peptide synthetase	Péptido sintetasa	T. atriviridae
G9PC76	G9PC76	G9PC76_HYPAI	Non-ribosomal peptide synthetase	Péptido sintetasa	T. atriviridae
G9PC77	G9PC77	G9PC77_HYPAI	Non-ribosomal peptide synthetase	Péptido sintetasa	T. atriviridae
G9PC78	G9PC78	G9PC78_HYPAI	Non-ribosomal peptide synthetase	Péptido sintetasa	T. atriviridae
G9PC79	G9PC79	G9PC79_HYPAI	Non-ribosomal peptide synthetase	Péptido sintetasa	T. atriviridae
G9PC80	G9PC80	G9PC80_HYPAI	Non-ribosomal peptide synthetase	Péptido sintetasa	T. atriviridae
A0A2T4AXJ8	A0A2T4AXJ8	A0A2T4AXJ8_9HY PO	Non-ribosomal peptide synthetase	Péptido sintetasa	T. citrinoviride
A0A2T4AXQ0	A0A2T4AXQ0	A0A2T4AXQ0_9HY PO	Non-ribosomal peptide synthetase	Péptido sintetasa	T. citrinoviride
A0A2T4A702	A0A2T4A702	A0A2T4AZ02_9HY	Non-ribosomal	Péptido sintetasa	T citripoviride
A0A2T4B1Q4	A0A2T4B1Q4	A0A2T4B1Q4_9HY PO	Non-ribosomal peptide synthetase	Péptido sintetasa	T. citrinoviride

		A0A2T4B6C3_9HY	Non-ribosomal		
A0A2T4B6C3	A0A2T4B6C3	PO	peptide synthetase	Péptido sintetasa	T. citrinoviride
A0A2T4B6D7	A0A2T4B6D7	A0A2T4B6D7_9HY PO	Non-ribosomal peptide synthetase	Péptido sintetasa	T. citrinoviride
A0A2T4BA82	A0A2T4BA82	A0A2T4BA82_9HY PO	Non-ribosomal peptide synthetase	Péptido sintetasa	T. citrinoviride
A0A2T4BID8	A0A2T4BID8	A0A2T4BID8_9HY PO	Non-ribosomal peptide synthetase	Péptido sintetasa	T. citrinoviride
A0A1T3CNS3	A0A1T3CNS3	A0A1T3CNS3_9HY PO	Non-ribosomal peptide synthetase	Péptido sintetasa	T. guizhouense
A0A1T3CVS7	A0A1T3CVS7	A0A1T3CVS7_9HY PO	Non-ribosomal peptide synthetase	Péptido sintetasa	T. guizhouense
A0A1T3CZI6	A0A1T3CZI6	A0A1T3CZI6_9HY PO	Non-ribosomal peptide synthetase	Péptido sintetasa	T. guizhouense
A0A2T4BSU3	A0A2T4BSU3	A0A2T4BSU3_TRI LO	Non-ribosomal peptide synthetase	Péptido sintetasa	T. longibrachiatum
A0A2T4BXY9	A0A2T4BXY9	A0A2T4BXY9_TRI LO	Non-ribosomal peptide synthetase	Péptido sintetasa	T. longibrachiatum
A0A2T4C1A6	A0A2T4C1A6	A0A2T4C1A6_TRIL O	Non-ribosomal peptide synthetase	Péptido sintetasa	T. longibrachiatum
A0A2T4C5U1	A0A2T4C5U1	A0A2T4C5U1_TRI LO	Non-ribosomal peptide synthetase	Péptido sintetasa	T. longibrachiatum
A0A2T4C7T5	A0A2T4C7T5	A0A2T4C7T5_TRIL O	Non-ribosomal peptide synthetase	Péptido sintetasa	T. longibrachiatum
A0A2T4CBG4	A0A2T4CBG4	A0A2T4CBG4_TRI LO	Non-ribosomal peptide synthetase	Péptido sintetasa	T. longibrachiatum
A0A1S6Q8M0	A0A1S6Q8M0	A0A1S6Q8M0_9H YPO	Non-ribosomal peptide synthetase	Péptido sintetasa	T. pleuroti

			Non-ribosomal		
G0R9H1	G0R9H1	G0R9H1_HYPJQ	peptide synthetase	Péptido sintetasa	T. reseei
G0RHA0	G0RHA0	G0RHA0_HYPJQ	Non-ribosomal peptide synthetase	Péptido sintetasa	T. reseei
G0RII4	G0RII4	G0RII4_HYPJQ	Non-ribosomal peptide synthetase	Péptido sintetasa	T. reseei
G0RS67	G0RS67	G0RS67_HYPJQ	Non-ribosomal peptide synthetase	Péptido sintetasa	T. reseei
G0RTQ2	G0RTQ2	G0RTQ2_HYPJQ	Non-ribosomal peptide synthetase	Péptido sintetasa	T. reseei
G0RUG7	G0RUG7	G0RUG7_HYPJQ	Non-ribosomal peptide synthetase	Péptido sintetasa	T. reseei
G0RXG2	G0RXG2	G0RXG2_HYPJQ	Non-ribosomal peptide synthetase	Péptido sintetasa	T. reseei
A0A8G0PKL2	A0A8G0PKL2	A0A8G0PKL2_9HY PO	Non-ribosomal peptide synthetase	Péptido sintetasa	T. simmonsii
A0A8G0PPR6	A0A8G0PPR6	A0A8G0PPR6_9H YPO	Non-ribosomal peptide synthetase	Péptido sintetasa	T. simmonsii
Q52Z73	Q52Z73	Q52Z73_HYPVI	Non-ribosomal peptide synthetase	Péptido sintetasa	T. virens
Q56PC8	Q56PC8	Q56PC8_HYPVI	Non-ribosomal peptide synthetase	Péptido sintetasa	T. virens
Q56PC9	Q56PC9	Q56PC9_HYPVI	Non-ribosomal peptide synthetase	Péptido sintetasa	T. virens
G9MFI0	G9MFI0	G9MFI0_HYPVG	Non-ribosomal peptide synthetase	Péptido sintetasa	T. virens
G9MKA1	G9MKA1	G9MKA1_HYPVG	Non-ribosomal peptide synthetase	Péptido sintetasa	T. virens

Ē

ī

			Non-ribosomal		
G9MPI7	G9MPI7	G9MPI7_HYPVG	peptide synthetase	Péptido sintetasa	T. virens
G9MUQ4	G9MUQ4	G9MUQ4_HYPVG	Non-ribosomal peptide synthetase	Péptido sintetasa	T. virens
G9MUY2	G9MUY2	G9MUY2_HYPVG	Non-ribosomal peptide synthetase	Péptido sintetasa	T. virens
G9MVE1	G9MVE1	G9MVE1_HYPVG	Non-ribosomal peptide synthetase	Péptido sintetasa	T. virens
G9MWW6	G9MWW6	G9MWW6_HYPVG	Non-ribosomal peptide synthetase	Péptido sintetasa	T. virens
G9MXJ8	G9MXJ8	G9MXJ8_HYPVG	Non-ribosomal peptide synthetase	Péptido sintetasa	T. virens
G9MXP9	G9MXP9	G9MXP9_HYPVG	Non-ribosomal peptide synthetase	Péptido sintetasa	T. virens
G9N0Q0	G9N0Q0	G9N0Q0_HYPVG	Non-ribosomal peptide synthetase	Péptido sintetasa	T. virens
G9N2Z7	G9N2Z7	G9N2Z7_HYPVG	Non-ribosomal peptide synthetase	Péptido sintetasa	T. virens
G9N3D3	G9N3D3	G9N3D3_HYPVG	Non-ribosomal peptide synthetase	Péptido sintetasa	T. virens
G9N4C5	G9N4C5	G9N4C5_HYPVG	Non-ribosomal peptide synthetase	Péptido sintetasa	T. virens
G9NC82	G9NC82	G9NC82_HYPVG	Non-ribosomal peptide synthetase	Péptido sintetasa	T. virens
A0A0F9ZYT9	A0A0F9ZYT9	A0A0F9ZYT9_TRI HA	O- methyltransferase	Metiltransferasa	T. harzianum
A0A2P4ZU54	A0A2P4ZU54	A0A2P4ZU54_9HY PO	Phenylalanine ammonia-lyase	Liasa	T. gamsii
A0A395NA74	A0A395NA74	A0A395NA74_TRI AR	Polyketide synthase	Sintasa	T. arundinaceum

		A0A395NAL1_TRI	Polyketide		
A0A395NAL1	A0A395NAL1	AR	synthase	Sintasa	T. arundinaceum
A0A395NTJ9	A0A395NTJ9	A0A395NTJ9_TRIA R	Polyketide synthase	Sintasa	T. arundinaceum
A0A395NTN4	A0A395NTN4	A0A395NTN4_TRI AR	Polyketide synthase	Sintasa	T. arundinaceum
A0A395NWR9	A0A395NWR9	A0A395NWR9_TRI AR	Polyketide synthase	Sintasa	T. arundinaceum
A0A2T4AXB2	A0A2T4AXB2	A0A2T4AXB2_9HY PO	Polyketide synthase	Sintasa	T. citrinoviride
A0A2T4B1X7	A0A2T4B1X7	A0A2T4B1X7_9HY PO	Polyketide synthase	Sintasa	T. citrinoviride
A0A2T4BJ57	A0A2T4BJ57	A0A2T4BJ57_9HY PO	Polyketide synthase	Sintasa	T. citrinoviride
A0A2T4BJU5	A0A2T4BJU5	A0A2T4BJU5_9HY PO	Polyketide synthase	Sintasa	T. citrinoviride
A0A2T4BLE1	A0A2T4BLE1	A0A2T4BLE1_9HY PO	Polyketide synthase	Sintasa	T. citrinoviride
A0A2T4BLV9	A0A2T4BLV9	A0A2T4BLV9_9HY PO	Polyketide synthase	Sintasa	T. citrinoviride
A0A2P4ZJS5	A0A2P4ZJS5	A0A2P4ZJS5_9HY PO	Polyketide synthase	Sintasa	T. gamsii
A0A1T3CS66	A0A1T3CS66	A0A1T3CS66_9HY PO	Polyketide synthase	Sintasa	T. guizhouense
A0A1T3CSS2	A0A1T3CSS2	A0A1T3CSS2_9HY PO	Polyketide synthase	Sintasa	T. guizhouense
A0A1T3CTX3	A0A1T3CTX3	A0A1T3CTX3_9HY PO	Polyketide synthase	Sintasa	T. guizhouense
A0A8G0PIA8	A0A8G0PIA8	A0A8G0PIA8_9HY PO	Polyketide synthase	Sintasa	T. simmonsii
			Putative aspartate		
Q9HDT6	Q9HDT6	Q9HDT6_TRIHA	protease	Proteasa	T. harzianum
A4V8W9	A4V8W9	A4V8W9_TRIHA	Putative aspartic endopeptidase	Peptidasa	T. harzianum
Q334I5	Q334I5	Q334I5_TRIHA	Putative aspartic protease	Proteasa	T. harzianum

O74567	O74567	O74567_TRIHA	QI74 protein	QI74 protein	T. harzianum
A0A395NEP4	A0A395NEP4	A0A395NEP4_TRI AR	Superoxide dismutase (EC 1.15.1.1)	Superóxido dismutasa	T. arundinaceum
A0A395P0H2	A0A395P0H2	A0A395P0H2_TRI AR	Superoxide dismutase (EC 1.15.1.1)	Superóxido dismutasa	T. arundinaceum
A0A6V8R4U7	A0A6V8R4U7	A0A6V8R4U7_9HY PO	Superoxide dismutase (EC 1.15.1.1)	Superóxido dismutasa	T. asperellum
A0A6V8RAU6	A0A6V8RAU6	A0A6V8RAU6_9HY PO	Superoxide dismutase (EC 1.15.1.1)	Superóxido dismutasa	T. asperellum
A0A2T4B141	A0A2T4B141	A0A2T4B141_9HY PO	Superoxide dismutase (EC 1.15.1.1)	Superóxido dismutasa	T. citrinoviride
A0A2T4B271	A0A2T4B271	A0A2T4B271_9HY PO	Superoxide dismutase (EC 1.15.1.1)	Superóxido dismutasa	T. citrinoviride
A0A2K0T4Q1	A0A2K0T4Q1	A0A2K0T4Q1_9HY PO	Superoxide dismutase (EC 1.15.1.1)	Superóxido dismutasa	T. gamsii
A0A2P4Z8G6	A0A2P4Z8G6	A0A2P4Z8G6_9HY PO	Superoxide dismutase (EC 1.15.1.1)	Superóxido dismutasa	T. gamsii
A0A2P4Z9B6	A0A2P4Z9B6	A0A2P4Z9B6_9HY PO	Superoxide dismutase (EC 1.15.1.1)	Superóxido dismutasa	T. gamsii
I2D5H7	I2D5H7	I2D5H7_9HYPO	Superoxide dismutase (EC 1.15.1.1)	Superóxido dismutasa	T. ghanense
A0A1T3CV03	A0A1T3CV03	A0A1T3CV03_9HY PO	Superoxide dismutase (EC 1.15.1.1)	Superóxido dismutasa	T. guizhouense
A0A1T3CYV1	A0A1T3CYV1	A0A1T3CYV1_9HY PO	Superoxide dismutase (EC 1.15.1.1)	Superóxido dismutasa	T. guizhouense
A0A0F9ZP58	A0A0F9ZP58	A0A0F9ZP58_TRI HA	Superoxide dismutase (EC 1.15.1.1)	Superóxido dismutasa	T. harzianum

A0A386IN76	A0A386IN76	A0A386IN76_TRIH A	Superoxide dismutase (EC 1.15.1.1)	Superóxido dismutasa	T. harzianum
D5M9Y1	D5M9Y1	D5M9Y1_TRILO	Superoxide dismutase (EC 1.15.1.1)	Superóxido dismutasa	T. longibrachiatum
A0A2H2YZW3	A0A2H2YZW3	A0A2H2YZW3_TRI PA	Superoxide dismutase (EC 1.15.1.1)	Superóxido dismutasa	T. parareesei
D5M9Y2	D5M9Y2	D5M9Y2_9HYPO	Superoxide dismutase (EC 1.15.1.1)	Superóxido dismutasa	T. saturnisporum
A0A8G0LGZ9	A0A8G0LGZ9	A0A8G0LGZ9_9HY PO	Superoxide dismutase (EC 1.15.1.1)	Superóxido dismutasa	T. simmonsii
A0A8G0PKW5	A0A8G0PKW5	A0A8G0PKW5_9H YPO	Superoxide dismutase (EC 1.15.1.1)	Superóxido dismutasa	T. simmonsii
			Terpene cyclase 6		
			(EC 4.2.3) (EC 4.2.3.104) (EC 4.2.3.137) (EC 4.2.3.157) (EC 4.2.3.182) (EC 4.2.3.57)		
A0A5S9I252	A0A5S9I252	TATC6_HYPAT	(Sesquiterpene synthase 6)	Sintasa	T. atriviridae
A0A2K0UKK3	A0A2K0UKK3	A0A2K0UKK3_TRI HA	Terpene synthase (EC 4.2.3)	Sintasa	T. harzianum
A0A024RWJ3	A0A024RWJ3	A0A024RWJ3_HY PJR	Terpene synthase (EC 4.2.3)	Sintasa	T. reseei
G0RW06	G0RW06	GORW06_HYPJQ	Terpene synthase (EC 4.2.3)	Sintasa	T. reseei
G9MFL5	G9MFL5	G9MFL5_HYPVG	Terpene synthase (EC 4.2.3)	Sintasa	T. virens

Q6A1B7	Q6A1B7	TRI5_TRIHA	Trichodiene synthase (EC 4.2.3.6) (Sesquiterpene cyclase) (TS)	Sintasa	T. harzianum
G0KYB1	G0KYB1	TRI3_TRIAR	Trichothecene O- acetyltransferase TRI3 (EC 2.3.2) (Trichothecene biosynthesis cluster protein 3)	Acetiltransferasa	T. arundinaceum

2.2 Distribución porcentual de proteínas de Trichoderma

Curado proteínas	cantidad	Porcentaje	Porcentaje acumulado
Quitinasa	333	51.07	51.07361963
Glutatión S transferasa	117	17.94	69.02
Péptido sintetasa	69	10.58	79.60
Dipeptidasa	25	3.83	83.44
Glucoamilasa	24	3.68	87.12
Sintasa	22	3.37	90.49
Superóxido dismutasa	19	2.91	93.40
Citocromo P450			
monooxygenasa	13	1.99	95.40
Catalasa	9	1.38	96.78
Poligalacturonasa	9	1.38	98.16
Proteasa	2	0.31	98.47
Arabinofuranosidasa	1	0.15	98.62
Xilosidasa	1	0.15	98.77
Endopeptidasa	1	0.15	98.93
Glucosa transporter	1	0.15	99.08
Hidrofobina	1	0.15	99.23
Metiltransferasa	1	0.15	99.39
Liasa	1	0.15	99.54
Peptidasa	1	0.15	99.69
QI74 protein	1	0.15	99.85
Acetiltransferasa	1	0.15	100.00
	652	100.00	

2.3 Distribución porcentual de especies de Trichoderma

Género y especie	cantidad	Porcentaje	Porcentaje acumulado
T. harzianum	169	25.92	25.92
T. longibrachiatum	50	7.67	33.59
T. guizhouense	40	6.13	39.72
T. arundinaceum	36	5.52	45.25
T. asperellum	35	5.37	50.61
T. citrinoviride	34	5.21	55.83
T. virens	34	5.21	61.04
T. atriviridae	30	4.60	65.64
T. gamsii	29	4.45	70.09
T. simmonsii	28	4.29	74.39
T. stromaticum	22	3.37	77.76
T. reseei	21	3.22	80.98
T. parareesei	15	2.30	83.28
Trichoderma sp.	10	1.53	84.82
T. orientale	9	1.38	86.20
T. brevicompactum	6	0.92	87.12
T. lixii	6	0.92	88.04
T. velutinum	6	0.92	88.96
T. viride	6	0.92	89.88
T. cerinum	4	0.61	90.49
T. rossicum	4	0.61	91.10
T. tomentosum	3	0.46	91.56
T. aethiopicum	2	0.31	91.87
T. aggressivum	2	0.31	92.18
T. barbatum	2	0.31	92.48
T. fertile	2	0.31	92.79
T. flaviconidium	2	0.31	93.10
T. ghanense	2	0.31	93.40
T. hamatum	2	0.31	93.71
T. koningii	2	0.31	94.02
T. lanuginosum	2	0.31	94.33
T. medusae	2	0.31	94.63
T. minutisporum	2	0.31	94.94
T. oblongisporum	2	0.31	95.25
T. piluliferum	2	0.31	95.55
T. polysporum	2	0.31	95.86
T. spirale	2	0.31	96.17
T. strictipile	2	0.31	96.47
T. vermipilum	2	0.31	96.78
T. afroharzianum	1	0.15	96.93

1	0.15	97.09
1	0.15	97.24
1	0.15	97.39
1	0.15	97.55
1	0.15	97.70
1	0.15	97.85
1	0.15	98.01
1	0.15	98.16
1	0.15	98.31
1	0.15	98.47
1	0.15	98.62
1	0.15	98.77
1	0.15	98.93
1	0.15	99.08
1	0.15	99.23
1	0.15	99.39
1	0.15	99.54
1	0.15	99.69
1	0.15	99.85
1	0.15	100.00
	1 1	1 0.15 1 0.15

2.4 Búsquedas por similitud secuencial para extender el número de proteínas biocontroladoras de referencia

Identificación de las 194 proteínas homólogas de Trichoderma harzianum y curado

proteoma	Especie	homologas encontradas	Entry	Protein names	Curado proteinas
UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZUG8	A0A2T3Z UG8_TRI HA	4-coumarate-CoA ligase	Ligasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A3P6	A0A2T4A 3P6_TRIH A	4-coumarate-CoA ligase	Ligasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZWH0	A0A2T3Z WH0_TRI HA	Acetoacetate-CoA ligase	Ligasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T4AEL9	A0A2T4A EL9_TRIH A	ADH_zinc_N domain-containing protein	ADH_zinc _N
UP000241690_9839 64	Trichoderma harzianum	A0A2T4AQY3	A0A2T4A QY3_TRI HA	AMP-binding domain protein	Proteína de unión AMP

UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZTT8	A0A2T3Z TT8_TRIH A	AMP-binding domain-containing protein	Proteína de unión AMP
UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZVL5	A0A2T3Z VL5_TRIH A	AMP-binding domain-containing protein	Proteína de unión AMP
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A0B8	A0A2T4A 0B8_TRIH A	AMP-binding domain-containing protein	Proteína de unión AMP
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A5G8	A0A2T4A 5G8_TRIH A	AMP-binding domain-containing protein	Proteína de unión AMP
UP000241690_9839 64	Trichoderma harzianum	A0A2T4AGE9	A0A2T4A GE9_TRI HA	AMP-binding domain-containing protein	Proteína de unión AMP
UP000241690_9839 64	Trichoderma harzianum	A0A2T4ANF5	A0A2T4A NF5_TRIH A	ANK_REP_REGION domain-containing protein	ANK_REP _REGION
UP000241690_9839 64	Trichoderma harzianum	A0A2T4ARX8	A0A2T4A RX8_TRI HA	ANK_REP_REGION domain-containing protein	Proteína de dominio
UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZSE0	A0A2T3Z SE0_TRIH A	ATPase expression protein 2, mitochondrial	ATPasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZRX9	A0A2T3Z RX9_TRI HA	Carbohydrate-binding module family 1 protein	Proteína de unión a carbohidra tos
UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZV65	A0A2T3Z V65_TRIH A	Carbohydrate-binding module family 1 protein	Proteína de unión a carbohidra tos
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A7K0	A0A2T4A 7K0_TRIH A	Carbohydrate-binding module family 18 protein	Proteína de unión a carbohidra tos
UP000241690_9839 64	Trichoderma harzianum	A0A2T4AN29	A0A2T4A N29_TRIH A	Carbohydrate-binding module family 18 protein	Proteína de unión a carbohidra tos
UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZUY6	A0A2T3Z UY6_TRI HA	Carboxylic ester hydrolase (EC 3.1.1)	Hidrolasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZS86	A0A2T3Z S86_TRIH A	Carrier domain-containing protein	Carrier
UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZU15	A0A2T3Z U15_TRIH A	Carrier domain-containing protein	Carrier
UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZU55	A0A2T3Z U55_TRIH A	Carrier domain-containing protein	Carrier

UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZU63	A0A2T3Z U63_TRIH A	Carrier domain-containing protein	Carrier
UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZU74	A0A2T3Z U74_TRIH A	Carrier domain-containing protein	Carrier
UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZU75	A0A2T3Z U75_TRIH A	Carrier domain-containing protein	Carrier
UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZY56	A0A2T3Z Y56_TRIH A	Carrier domain-containing protein	Carrier
UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZYZ0	A0A2T3Z YZ0_TRIH A	Carrier domain-containing protein	Carrier
UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZZF2	A0A2T3Z ZF2_TRIH A	Carrier domain-containing protein	Carrier
UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZZQ2	A0A2T3Z ZQ2_TRI HA	Carrier domain-containing protein	Carrier
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A1H4	A0A2T4A 1H4_TRIH A	Carrier domain-containing protein	Carrier
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A1L6	A0A2T4A 1L6_TRIH A	Carrier domain-containing protein	Carrier
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A4E8	A0A2T4A 4E8_TRIH A	Carrier domain-containing protein	Carrier
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A534	A0A2T4A 534_TRIH A	Carrier domain-containing protein	Carrier
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A547	A0A2T4A 547_TRIH A	Carrier domain-containing protein	Carrier
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A717	A0A2T4A 717_TRIH A	Carrier domain-containing protein	Carrier
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A7F2	A0A2T4A 7F2_TRIH A	Carrier domain-containing protein	Carrier
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A8X1	A0A2T4A 8X1_TRIH A	Carrier domain-containing protein	Carrier
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A967	A0A2T4A 967_TRIH A	Carrier domain-containing protein	Carrier
UP000241690_9839 64	Trichoderma harzianum	A0A2T4AC38	A0A2T4A C38_TRIH A	Carrier domain-containing protein	Carrier
UP000241690_9839 64	Trichoderma harzianum	A0A2T4AF46	A0A2T4A F46_TRIH A	Carrier domain-containing protein	Carrier
UP000241690_9839 64	Trichoderma harzianum	A0A2T4AGE5	A0A2T4A GE5_TRI HA	Carrier domain-containing protein	Carrier
UP000241690_9839 64	Trichoderma harzianum	A0A2T4AJG3	A0A2T4AJ G3_TRIH A	Carrier domain-containing protein	Carrier
UP000241690_9839 64	Trichoderma harzianum	A0A2T4AJH1	A0A2T4AJ H1_TRIH A	Carrier domain-containing protein	Carrier

UP000241690_9839 64	Trichoderma harzianum	A0A2T4AJK5	A0A2T4AJ K5_TRIHA	Carrier domain-containing protein	Carrier
UP000241690_9839 64	Trichoderma harzianum	A0A2T4ALI7	A0A2T4A LI7_TRIH A	Carrier domain-containing protein	Carrier
UP000241690_9839 64	Trichoderma harzianum	A0A2T4AM83	A0A2T4A M83_TRI HA	Carrier domain-containing protein	Carrier
UP000241690_9839 64	Trichoderma harzianum	A0A2T4AMS5	A0A2T4A MS5_TRI HA	Carrier domain-containing protein	Carrier
UP000241690_9839 64	Trichoderma harzianum	A0A2T4AQ07	A0A2T4A Q07_TRIH A	Carrier domain-containing protein	Carrier
UP000241690_9839 64	Trichoderma harzianum	A0A2T4ASH4	A0A2T4A SH4_TRI HA	Carrier domain-containing protein	Carrier
UP000241690_9839 64	Trichoderma harzianum	A0A2T4AT63	A0A2T4A T63_TRIH A	Carrier domain-containing protein	Carrier
UP000241690_9839 64	Trichoderma harzianum	A0A2T4Al63	A0A2T4AI 63_TRIHA	Catalase (EC 1.11.1.6)	Catalasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T4ALQ1	A0A2T4A LQ1_TRIH A	Catalase (EC 1.11.1.6)	Catalasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T4AQ87	A0A2T4A Q87_TRIH A	Catalase (EC 1.11.1.6)	Catalasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZZ64	A0A2T3Z Z64_TRIH A	Catalase domain-containing protein	Catalasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A104	A0A2T4A 104_TRIH A	Cation_ATPase_N domain-containing protein	ATPasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZS11	A0A2T3Z S11_TRIH A	chitinase (EC 3.2.1.14)	Quitinasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZSC7	A0A2T3Z SC7_TRI HA	chitinase (EC 3.2.1.14)	Quitinasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZT47	A0A2T3Z T47_TRIH A	chitinase (EC 3.2.1.14)	Quitinasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZTE7	A0A2T3Z TE7_TRIH A	chitinase (EC 3.2.1.14)	Quitinasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZTW1	A0A2T3Z TW1_TRI HA	chitinase (EC 3.2.1.14)	Quitinasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZVA5	A0A2T3Z VA5_TRIH A	chitinase (EC 3.2.1.14)	Quitinasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZWE2	A0A2T3Z WE2_TRI HA	chitinase (EC 3.2.1.14)	Quitinasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZXF5	A0A2T3Z XF5_TRIH A	chitinase (EC 3.2.1.14)	Quitinasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZXJ8	A0A2T3Z XJ8_TRIH A	chitinase (EC 3.2.1.14)	Quitinasa

UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZYC5	A0A2T3Z YC5_TRI HA	chitinase (EC 3.2.1.14)	Quitinasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A0N5	A0A2T4A 0N5_TRIH A	chitinase (EC 3.2.1.14)	Quitinasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A553	A0A2T4A 553_TRIH A	chitinase (EC 3.2.1.14)	Quitinasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A6I8	A0A2T4A 6I8_TRIH A	chitinase (EC 3.2.1.14)	Quitinasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T4AE80	A0A2T4A E80_TRIH A	chitinase (EC 3.2.1.14)	Quitinasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T4AFS6	A0A2T4A FS6_TRIH A	chitinase (EC 3.2.1.14)	Quitinasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T4AI43	A0A2T4AI 43_TRIHA	chitinase (EC 3.2.1.14)	Quitinasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T4AIG1	A0A2T4AI G1_TRIH A	chitinase (EC 3.2.1.14)	Quitinasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T4AMS9	A0A2T4A MS9_TRI HA	chitinase (EC 3.2.1.14)	Quitinasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T4AMW4	A0A2T4A MW4_TRI HA	chitinase (EC 3.2.1.14)	Quitinasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T4AN31	A0A2T4A N31_TRIH A	chitinase (EC 3.2.1.14)	Quitinasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZRB7	A0A2T3Z RB7_TRI HA	Chitin-binding type-1 domain-containing protein	Quitinasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T4AN63	A0A2T4A N63_TRIH A	COesterase domain-containing protein	Coesteras a
UP000241690_9839 64	Trichoderma harzianum	A0A2T4AE65	A0A2T4A E65_TRIH A	Conserved oligomeric Golgi complex subunit 5	Conserve d oligomeric Golgi complex subunit 5
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A1X2	A0A2T4A 1X2_TRIH A	Cytochrome P450	Citocromo P450
UP000241690_9839 64	Trichoderma harzianum	A0A2T4AF07	A0A2T4A F07_TRIH A	Cytochrome P450	Citocromo P450
UP000241690_9839 64	Trichoderma harzianum	A0A2T4ANG0	A0A2T4A NG0_TRI HA	Cytochrome P450	Citocromo P450
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A624	A0A2T4A 624_TRIH A	Dipeptidase (EC 3.4.13.19)	Dipeptidas a
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A7E0	A0A2T4A 7E0_TRIH A	Dipeptidase (EC 3.4.13.19)	Dipeptidas a

UP000241690_9839 64	Trichoderma harzianum	A0A2T4A9I9	A0A2T4A 9I9_TRIH A	DNA-directed RNA polymerase III complex subunit Rpc37	Polimeras a
UP000241690_9839 64	Trichoderma harzianum	A0A2T4AR05	A0A2T4A R05_TRIH A	DUF4203 domain-containing protein	DUF4203
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A107	A0A2T4A 107_TRIH A	Endo-chitosanase (EC 3.2.1.132)	Quitosana sa
UP000241690_9839 64	Trichoderma harzianum	A0A2T4AN14	A0A2T4A N14_TRIH A	Endo-chitosanase (EC 3.2.1.132)	Quitosana sa
UP000241690_9839 64	Trichoderma harzianum	A0A2T4AJQ7	A0A2T4AJ Q7_TRIH A	Enoyl reductase (ER) domain-containing protein	Reductasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZYL4	A0A2T3Z YL4_TRIH A	Epimerase domain-containing protein	Epimerasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A2Z3	A0A2T4A 2Z3_TRIH A	Epimerase domain-containing protein	Epimerasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A5J7	A0A2T4A 5J7_TRIH A	Epimerase domain-containing protein	Epimerasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A8I8	A0A2T4A 8I8_TRIH A	Epimerase domain-containing protein	Epimerasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZVD8	A0A2T3Z VD8_TRI HA	F-box domain-containing protein	F-box
UP000241690_9839 64	Trichoderma harzianum	A0A2T4ABR4	A0A2T4A BR4_TRI HA	Fungal_trans domain-containing protein	Fungal_tra ns
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A9M2	A0A2T4A 9M2_TRI HA	GFO_IDH_MocA domain-containing protein	GFO_IDH _MocA
UP000241690_9839 64	Trichoderma harzianum	A0A2T4AIL4	A0A2T4AI L4_TRIHA	Glucoamylase (EC 3.2.1.3) (1,4-alpha-D-glucan glucohydrolase) (Glucan 1,4-alpha-glucosidase)	Glucoamil asa
UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZRC7	A0A2T3Z RC7_TRI HA	Glutathione S-transferase	Glutatión S- transferas a
UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZRF7	A0A2T3Z RF7_TRIH A	Glutathione S-transferase	Glutatión S- transferas a
UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZV90	A0A2T3Z V90_TRIH A	Glutathione S-transferase	Glutatión S- transferas a
UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZXH8	A0A2T3Z XH8_TRI HA	Glutathione S-transferase	Glutatión S- transferas a
UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZZJ2	A0A2T3Z ZJ2_TRIH A	Glutathione S-transferase	Glutatión S- transferas a
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A1R6	A0A2T4A 1R6_TRIH A	Glutathione S-transferase	Glutatión S- transferas a

UP000241690_9839 64	Trichoderma harzianum	A0A2T4A257	A0A2T4A 257_TRIH A	Glutathione S-transferase	Glutatión S- transferas a
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A4E3	A0A2T4A 4E3_TRIH A	Glutathione S-transferase	Glutatión S- transferas a
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A4K5	A0A2T4A 4K5_TRIH A	Glutathione S-transferase	Glutatión S- transferas a
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A706	A0A2T4A 706_TRIH A	Glutathione S-transferase	Glutatión S- transferas a
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A7D7	A0A2T4A 7D7_TRIH A	Glutathione S-transferase	Glutatión S- transferas a
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A7E1	A0A2T4A 7E1_TRIH A	Glutathione S-transferase	Glutatión S- transferas a
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A7P2	A0A2T4A 7P2_TRIH A	Glutathione S-transferase	Glutatión S- transferas a
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A8T7	A0A2T4A 8T7_TRIH A	Glutathione S-transferase	Glutatión S- transferas a
UP000241690_9839 64	Trichoderma harzianum	A0A2T4AA68	A0A2T4A A68_TRIH A	Glutathione S-transferase	Glutatión S- transferas a
UP000241690_9839 64	Trichoderma harzianum	A0A2T4AGD1	A0A2T4A GD1_TRI HA	Glutathione S-transferase	Glutatión S- transferas a
UP000241690_9839 64	Trichoderma harzianum	A0A2T4AH65	A0A2T4A H65_TRIH A	Glutathione S-transferase	Glutatión S- transferas a
UP000241690_9839 64	Trichoderma harzianum	A0A2T4AIV4	A0A2T4AI V4_TRIHA	Glutathione S-transferase	Glutatión S- transferas a
UP000241690_9839 64	Trichoderma harzianum	A0A2T4AMT6	A0A2T4A MT6_TRI HA	Glutathione S-transferase	Glutatión S- transferas a
UP000241690_9839 64	Trichoderma harzianum	A0A2T4AN21	A0A2T4A N21_TRIH A	Glutathione S-transferase	Glutatión S- transferas a
UP000241690_9839 64	Trichoderma harzianum	A0A2T4AN27	A0A2T4A N27_TRIH A	Glutathione S-transferase	Glutatión S- transferas a
UP000241690_9839 64	Trichoderma harzianum	A0A2T4AQ37	A0A2T4A Q37_TRIH A	Glutathione S-transferase	Glutatión S- transferas a

UP000241690_9839 64	Trichoderma harzianum	A0A2T4AN56	A0A2T4A N56_TRIH A	Glutathione S-transferase domain-containing protein	Glutatión S- transferas a
UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZV04	A0A2T3Z V04_TRIH A	Glycoside hydrolase family 17 protein	Hidrolasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZVR8	A0A2T3Z VR8_TRI HA	Glycoside hydrolase family 18 protein	Hidrolasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZVG1	A0A2T3Z VG1_TRI HA	Glycoside hydrolase family 28 protein	Hidrolasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T4AVP0	A0A2T4A VP0_TRIH A	Glycoside hydrolase family 92 protein	Hidrolasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZVE5	A0A2T3Z VE5_TRIH A	GST C-terminal domain-containing protein	GST C- terminal
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A768	A0A2T4A 768_TRIH A	GST C-terminal domain-containing protein	GST C- terminal
UP000241690_9839 64	Trichoderma harzianum	A0A2T4AMH9	A0A2T4A MH9_TRI HA	GST C-terminal domain-containing protein	GST C- terminal
UP000241690_9839 64	Trichoderma harzianum	A0A2T4AMS3	A0A2T4A MS3_TRI HA	GST C-terminal domain-containing protein	GST C- terminal
UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZSC8	A0A2T3Z SC8_TRI HA	GST N-terminal domain-containing protein	GST C- terminal
UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZUC7	A0A2T3Z UC7_TRI HA	GST N-terminal domain-containing protein	GST C- terminal
UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZV30	A0A2T3Z V30_TRIH A	GST N-terminal domain-containing protein	GST C- terminal
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A1N9	A0A2T4A 1N9_TRIH A	GST N-terminal domain-containing protein	GST C- terminal
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A5B9	A0A2T4A 5B9_TRIH A	GST N-terminal domain-containing protein	GST C- terminal
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A6W5	A0A2T4A 6W5_TRI HA	GST N-terminal domain-containing protein	GST C- terminal
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A7U3	A0A2T4A 7U3_TRIH A	GST N-terminal domain-containing protein	GST C- terminal
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A875	A0A2T4A 875_TRIH A	GST N-terminal domain-containing protein	GST C- terminal
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A8B2	A0A2T4A 8B2_TRIH A	GST N-terminal domain-containing protein	GST C- terminal
UP000241690_9839 64	Trichoderma harzianum	A0A2T4AAD9	A0A2T4A AD9_TRI HA	GST N-terminal domain-containing protein	GST C- terminal
UP000241690_9839 64	Trichoderma harzianum	A0A2T4ABK2	A0A2T4A BK2_TRIH A	GST N-terminal domain-containing protein	GST C- terminal

UP000241690_9839 64	Trichoderma harzianum	A0A2T4AMQ9	A0A2T4A MQ9_TRI HA	GST N-terminal domain-containing protein	GST C- terminal
UP000241690_9839 64	Trichoderma harzianum	A0A2T4AS48	A0A2T4A S48_TRIH A	GST N-terminal domain-containing protein	GST C- terminal
UP000241690_9839 64	Trichoderma harzianum	A0A2T4AUA8	A0A2T4A UA8_TRI HA	GST N-terminal domain-containing protein	GST C- terminal
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A8F3	A0A2T4A 8F3_TRIH A	HET domain-containing protein	HET
UP000241690_9839 64	Trichoderma harzianum	A0A2T4ABI2	A0A2T4A BI2_TRIH A	HET domain-containing protein	HET
UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZUA8	A0A2T3Z UA8_TRI HA	Hydrophobin	Hidrofobin a
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A1B6	A0A2T4A 1B6_TRIH A	Hydrophobin	Hidrofobin a
UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZVQ7	A0A2T3Z VQ7_TRI HA	KH type-2 domain-containing protein	KH type-2
UP000241690_9839 64	Trichoderma harzianum	A0A2T4AN17	A0A2T4A N17_TRIH A	Lactamase_B domain-containing protein	Lactamas a
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A8N7	A0A2T4A 8N7_TRIH A	Maleylacetoacetate isomerase	Isomerasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZUG3	A0A2T3Z UG3_TRI HA	Metal homeostatis protein bsd2	Metal homeostat is protein bsd2
UP000241690_9839 64	Trichoderma harzianum	A0A2T4AJ69	A0A2T4AJ 69_TRIHA	Methyltranfer_dom domain-containing protein	Metiltransf erasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A3J7	A0A2T4A 3J7_TRIH A	Methyltransf_2 domain-containing protein	Metiltransf erasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A2J4	A0A2T4A 2J4_TRIH A	MFS domain-containing protein	MFS
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A5N1	A0A2T4A 5N1_TRIH A	MFS domain-containing protein	MFS
UP000241690_9839 64	Trichoderma harzianum	A0A2T4AU10	A0A2T4A U10_TRIH A	MFS domain-containing protein	MFS
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A3M4	A0A2T4A 3M4_TRI HA	MMS19 nucleotide excision repair protein	MMS19 nucleotide excision repair protein
UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZTV7	A0A2T3Z TV7_TRIH A	mRNA-capping enzyme subunit beta (EC 3.6.1.74) (mRNA 5'-phosphatase) (mRNA 5'- triphosphate monophosphatase)	Fosfatasa

UP000241690_9839 64	Trichoderma harzianum	A0A2T4A574	A0A2T4A 574_TRIH A	NAD(P)-binding protein	Proteína de unión NAD(P)
UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZSS0	A0A2T3Z SS0_TRIH A	NCS1 nucleoside transporter family	Transport er
UP000241690_9839 64	Trichoderma harzianum	A0A2T4AP54	A0A2T4A P54_TRIH A	Nnf1-domain-containing protein	Proteína de dominio
UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZV86	A0A2T3Z V86_TRIH A	non-reducing end alpha-L-arabinofuranosidase (EC 3.2.1.55)	Arabinofur anosidasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T4AVM6	A0A2T4A VM6_TRI HA	non-reducing end alpha-L-arabinofuranosidase (EC 3.2.1.55)	Arabinofur anosidasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T4AEC2	A0A2T4A EC2_TRI HA	PCI domain-containing protein	PCI
UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZZM6	A0A2T3Z ZM6_TRI HA	Peptidase A1 domain-containing protein	Peptidasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A7J1	A0A2T4A 7J1_TRIH A	Peptidase A1 domain-containing protein	Peptidasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A8V4	A0A2T4A 8V4_TRIH A	Peptidase A1 domain-containing protein	Peptidasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T4AJ17	A0A2T4AJ 17_TRIHA	Peptidase A1 domain-containing protein	Peptidasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T4ASQ6	A0A2T4A SQ6_TRI HA	Peptidase A1 domain-containing protein	Peptidasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZWF4	A0A2T3Z WF4_TRI HA	Peptidase_S8 domain-containing protein	Peptidasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A9V6	A0A2T4A 9V6_TRIH A	peptidylprolyl isomerase (EC 5.2.1.8)	Isomerasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZV97	A0A2T3Z V97_TRIH A	Phenylacetate 2-hydroxylase	Hidrolasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A8T6	A0A2T4A 8T6_TRIH A	Phenylacetate 2-hydroxylase	Hidrolasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A4P3	A0A2T4A 4P3_TRIH A	PKS_ER domain-containing protein	PKS_ER
UP000241690_9839 64	Trichoderma harzianum	A0A2T4ARX2	A0A2T4A RX2_TRI HA	PNP_UDP_1 domain-containing protein	PNP_UDP _1
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A766	A0A2T4A 766_TRIH A	Propionyl-CoA synthetase	Sintetasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZXH0	A0A2T3Z XH0_TRI HA	Protein kinase domain-containing protein	Kinasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T4AFV1	A0A2T4A FV1_TRIH A	Protein kinase domain-containing protein	Kinasa

UP000241690_9839 64	Trichoderma harzianum	A0A2T4AHX1	A0A2T4A HX1_TRI HA	Protein kinase domain-containing protein	Kinasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T4ATC2	A0A2T4A TC2_TRIH A	Pyr_redox_2 domain-containing protein	Pyr_redox _2
UP000241690_9839 64	Trichoderma harzianum	A0A2T4APA5	A0A2T4A PA5_TRIH A	RNA helicase (EC 3.6.4.13)	Helicasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T4ACM6	A0A2T4A CM6_TRI HA	rRNA adenine N(6)-methyltransferase (EC 2.1.1)	Metiltransf erasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T4AGG1	A0A2T4A GG1_TRI HA	Secreted protein	Secreted protein
UP000241690_9839 64	Trichoderma harzianum	A0A2T4AMF8	A0A2T4A MF8_TRI HA	Septum-promoting GTP-binding protein 1	Proteína unión GTP
UP000241690_9839 64	Trichoderma harzianum	A0A2T4ANF4	A0A2T4A NF4_TRIH A	SnoaL-like domain-containing protein	SnoaL-like
UP000241690_9839 64	Trichoderma harzianum	A0A2T4ANN7	A0A2T4A NN7_TRI HA	Sod_Fe_C domain-containing protein	Sod_Fe_C
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A8M5	A0A2T4A 8M5_TRI HA	STAS domain-containing protein	STAS
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A2G1	A0A2T4A 2G1_TRIH A	Superoxide dismutase (EC 1.15.1.1)	Superóxid o dismutasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A807	A0A2T4A 807_TRIH A	Superoxide dismutase (EC 1.15.1.1)	Superóxid o dismutasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A1Z2	A0A2T4A 1Z2_TRIH A	Terpene synthase (EC 4.2.3)	Sintasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T4ASS3	A0A2T4A SS3_TRIH A	Terpene synthase (EC 4.2.3)	Sintasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZYU7	A0A2T3Z YU7_TRI HA	TLC domain-containing protein	TLC
UP000241690_9839 64	Trichoderma harzianum	A0A2T4AJJ0	A0A2T4AJ J0_TRIHA	Transposase	Transposa sa
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A5J3	A0A2T4A 5J3_TRIH A	UDP-glucose 4-epimerase (EC 5.1.3.2)	Epimerasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T4ANX6	A0A2T4A NX6_TRI HA	Zinc/iron permease	Permeasa
UP000241690_9839 64	Trichoderma harzianum	A0A2T3ZVW4	A0A2T3Z VW4_TRI HA	Zn(2)-C6 fungal-type domain-containing protein	Zn(2)-C6 fungal- type
UP000241690_9839 64	Trichoderma harzianum	A0A2T4A369	A0A2T4A 369_TRIH A	Zn(2)-C6 fungal-type domain-containing protein	Zn(2)-C6 fungal- type

Trichoderma	Número	Porcentaje	Porcentaje acumulado
Carrier	31	15,98	15,98
Glutatión S-transferasa	41.0	21.1	32.0
Quitinasa	21	10,82	38,66
Hidrolasa	7	3,61	51,55
	<u> </u>	2.00	54.64
	0	3,09	54,64
Peptidasa	6	3,09	57,73
Epimerasa	5	2,58	60,31
Proteína de unión a carbohidratos	4	2,06	62,37
Catalasa	4	2,06	64,43
Ligasa	3	1,55	65,98
Citocromo P450	3	1,55	67,53
Metiltransferasa	3	1,55	69,07
MFS	3	1,55	70,62
Kinasa	3	1,55	72,17
Proteína de dominio	2	1,03	73,20
ATPasa	2	1,03	74,23
Dipeptidasa	2	1,03	75,26
Quitosanasa	2	1,03	76,29
HET	2	1,03	77,32
Hidrofobina	2	1,03	78,35
Isomerasa	2	1,03	79,38
Arabinofuranosidasa	2	1,03	80,41
Superóxido dismutasa	2	1,03	81.44
Sintasa	2	1 03	82 47
Jiillasa	۷	1,00	02,41
Zn(2)-C6 fungal-type	2	1,03	83,51
ADH_zinc_N	1	0,52	84,02
--	---	------	-------
ANK_REP_REGION	1	0,52	84,54
Coesterasa	1	0,52	85,05
complex subunit 5	1	0,52	85,57
Polimerasa	1	0,52	86,08
DUF4203	1	0,52	86,60
Reductasa	1	0,52	87,11
F-box	1	0,52	87,63
Fungal_trans	1	0,52	88,14
GFO_IDH_MocA	1	0,52	88,66
Glucoamilasa	1	0,52	89,18
KH type-2	1	0,52	89,69
Lactamasa	1	0,52	90,21
Metal homeostatis protein bsd2	1	0.52	90.72
		-,	
MMS19 nucleotide excision repair protein	1	0,52	91,24
Fosfatasa	1	0,52	91,75
Proteína de unión NAD(P)	1	0,52	92,27
Transporter	1	0,52	92,78
PCI	1	0,52	93,30
PKS_ER	1	0,52	93,82
PNP_UDP_1	1	0,52	94,33
Sintetasa	1	0,52	94,85
Pyr_redox_2	1	0,52	95,36
Helicasa	1	0,52	95,88
Secreted protein	1	0,52	96,39

Proteína unión GTP	1	0,52	96,91
SnoaL-like	1	0,52	97,42
Sod_Fe_C	1	0,52	97,94
STAS	1	0,52	98,45
TLC	1	0,52	98,97
Transposasa	1	0,52	99,49
Permeasa	1	0,52	100,00

Identificación de las 121 proteínas homólogas de Beauveria bassiana y curado

		h em el e me e			
nroteoma	Fspecie	nomologas	Entry	Protein names	Curado proteinas
LIP000235728_17	Beauveria	encontradas		r rotein names	ourado proteinas
6275	bessiana			40S ribosomal protein S3	40S ribosomal S3
UD000225728 17	Boouvorio				403 1100301181 33
6275	bessiana		AUAZINUNFJ Q	1-bydroxy/butyrateCoA ligase 2	Ligasa
UD000225729 17	Pooluvorio	AUAZINUNI 33		4-invertex a synthetics (EC	Liyasa
0P000235726_17 6275	beauveria	1012N6D2M8		Acetyi-coenzyme A synthetase (EC	Sintotaca
0275	Dassiaria	AUAZINUF ZIVIO		0.2.1.1)	Sintetasa
0F000233720_17 6275	beauveria		FO	Acyi-CoA synthetase family member 3,	Sintotasa
0275	Dassiaria			Ald Yan dh C2 domain containing	Sintetasa
0P000235726_17	beauveria			Ald_Xan_dn_C2 domain-containing	Ald Yan dh Co
0275	Dassiaria			protein Alaba L. arabiasturansaidasa (EC	Ald_Xan_dn_C2
0P000235728_17	Beauveria	AUAZINGINDIVI	AUAZINGIND	Alpha-L-arabinofuranosidase (EC	A we have a future of a local
6275	Dassiana	5	CIVI	3.2.1.55)	Arabinofuranosidasa
UP000235728_17	Beauveria		AUA2N6NP		
6275	bassiana	AUA2N6NPP7	P7	Aminopeptidase 2, mitochondrial	Aminopeptidasa
UP000235728_17	Beauveria		A0A2N6NWI		
6275	bassiana	A0A2N6NWI5	5	Antifungal protein	Antifungica
UP000235728_17	Beauveria		A0A2N6N9J		_
6275	bassiana	A0A2N6N9J8	8	Aspartic protease pep1	Proteasa
UP000235728_17	Beauveria	A0A2N6NEQ	A0A2N6NE	ATP-dependent DNA helicase (EC	
6275	bassiana	5	Q5	3.6.4.12)	Helicasa
UP000235728_17	Beauveria	A0A2N6NWE	A0A2N6NW		
6275	bassiana	1	E1	Calcium-transporting ATPase 3	ATPasa
UP000235728_17	Beauveria		A0A2N6NS8		
6275	bassiana	A0A2N6NS81	1	Catalase (EC 1.11.1.6)	Catalasa
UP000235728_17	Beauveria		A0A2N6P30	Catalase-peroxidase (CP) (EC	
6275	bassiana	A0A2N6P305	5	1.11.1.21) (Peroxidase/catalase)	Catalasa
UP000235728_17	Beauveria		A0A2N6N92		
6275	bassiana	A0A2N6N925	5	chitinase (EC 3.2.1.14)	Quitinasa
UP000235728_17	Beauveria		A0A2N6ND		
6275	bassiana	A0A2N6NDL2	L2	chitinase (EC 3.2.1.14)	Quitinasa
UP000235728_17	Beauveria		A0A2N6NE		
6275	bassiana	A0A2N6NEE7	E7	chitinase (EC 3.2.1.14)	Quitinasa
UP000235728_17	Beauveria	1	A0A2N6NEI		
6275	bassiana	A0A2N6NEI6	6	chitinase (EC 3.2.1.14)	Quitinasa
UP000235728_17	Beauveria	A0A2N6NSC	A0A2N6NS		
6275	bassiana	6	C6	chitinase (EC 3.2.1.14)	Quitinasa
UP000235728_17	Beauveria		A0A2N6NSJ		
6275	bassiana	A0A2N6NSJ0	0	chitinase (EC 3.2.1.14)	Quitinasa

UP000235728_17	Beauveria	A0A2N6NYG	A0A2N6NY		
6275	bassiana	4	G4	chitinase (EC 3.2.1.14)	Quitinasa
UP000235728_17	Beauveria		A0A2N6P1		
6275	bassiana	A0A2N6P1G2	G2	chitinase (EC 3.2.1.14)	Quitinasa
UP000235728_17	Beauveria		A0A2N6P1R		
6275	bassiana	A0A2N6P1R8	8	chitinase (EC 3.2.1.14)	Quitinasa
UP000235728 17	Beauveria		A0A2N6NA9		
6275	bassiana	A0A2N6NA94	4	Choriogenin Hminor	Choriogenin Hminor
UP000235728 17	Beauveria		A0A2N6NJ8		
6275	bassiana	A0A2N6NJ84	4	Compactin diketide synthase mokB	Sintasa
UP000235728 17	Beauveria		A0A2N6NP		
6275	bassiana	A0A2N6NPV8	V8	Compactin diketide synthase mokB	Sintasa
UP000235728_17	Beauveria		A0A2N6P0B		
6275	bassiana	A0A2N6P0B2	2	Compactin diketide synthase mokB	Sintasa
UP000235728_17	Beauveria	A0A2N6NWJ	A0A2N6NW		
6275	bassiana	5	J5	Compactin nonaketide synthase mokA	Sintasa
LIP000235728_17	Beauveria		A0A2N6N7		
6275	bassiana	7	07	Cystathionine gamma-lyase	Liasa
LIP000235728_17	Beauveria			Cytochrome P450 monooxygenase	
6275	bassiana	A0A2N6NV/.19	9	dtxS2	Cit P450 monooxigenasa
LIP000235728_17	Beauveria	71071211011100		00.02	
6275	bassiana		6	Dipentidase (EC 3 4 13 19)	Pentidasa
UP000235728_17	Reguveria	7.07.21.01.1200			replicada
6275	bassiana	40A2N6NI 92	2	DNA polymerase (EC 2 7 7 7)	Polimerasa
UP000235728_17	Beauveria				i omnordad
6275	hassiana	AUAZINUNDE	F4	DNA-binding protein RAP1	Proteína unión ADN
UD000225729 17	Boouvorio				
6275	bassiana	8	78	DI IE4048 domain-containing protein	
UP000235728 17	Beauveria			Der 4040 demain containing protein	001 4040
6275	bassiana	0		Dynamin-related protein DNM1	
UD000225729 17	Boouvorio	0		Bynamin related protein Britin	BINNI
6275	bassiana		XOAZINOINK	Elongation factor 1-gamma 1	Eactor de elongación
UP000235728_17	Reguveria	710712110111070	4042N6P17		
6275	bassiana	4042N6P179	9	Endochitinase 3	Quitinasa
UP000235728 17	Beauveria			Endooniiindoo o	Quillingsu
6275	bassiana			Endochitinase 33	Quitinasa
UP000235728_17	Reguveria			Endoplasmic reticulum membrane	Quillingsu
6275	bassiana		q	protein 65	eína del retículo endonlasmá
UP000235728_17	Reguveria	7.07.12110110210		protein oo	
6275	hassiana		5	Enniatin synthase	Sintasa
UP000235728 17	Beauveria			Enniatin Synthase	Ointasa
6275	bassiana		RQ	Enniatin synthase	Sintasa
UP000235728 17	Beauveria	5		Enniatin Synthase	Ointasa
6275	bassiana		73	Enniatin synthase	Sintasa
UD000225729 17	Poouvorio	AUAZINONINI J		En mambrana protoin complex subunit	Sinasa
0F000233720_17 6275	beauveria		AUAZINOINLS		aína dal ratícula andanlasmá
0215	Dassiana	AUAZINUNESU	0	\sum	
11000035739 17	Reguverio			D-dlucan dlucobydrolase) (Clucan 1.4	
6275	beauveria			alpha-ducosidase)	Glucoamilaca
UZ10	Beauvorio	MUTZINUF ID4		Glucosamino 6 phosphoto N	Giucoamiidaa
0F000233728_17 6275	beauveria	4042NIGN070		acetyltrapsforase (EC.2.2.1.4)	Acatiltransforma
UZ10	Beauvorio			accivitationerase (LC 2.3.1.4)	70511110115161050
6275	beauveria		AUAZINONO EE	Glutathiono S transforces	Glutatión S Transforces
UZIO	Pooluvorio			Giulanione S-liansielase	Sintanon S Hansielasa
0F000233728_17 6275	beauveria			Glutathiono S transforces	Glutatión S Transforces
02/0	Dassiana	0		Giulanione S-transferase	Giulation S Transferasa
0275	beauveria			Clutothiono & transformer 1	Clutatión & Transformer
02/5	Dassiana	AUAZINDINY /8	0	Giulalnione S-transferase 1	Giulation S Transferasa
0275	Beauveria		AUAZN6P17	Clutathiona & transformed instant	Clutatión & Transformer
02/0	Dassiaha	AUAZINOP172		Gutathione S-transferase 1, Isoform C	Giulation S Transferasa
0P000235728_17	Beauveria			Clutothiono & transformer 2	Clutatión & Transformer
02/0	Dassialia	AUAZINONI Y /		Giulaniione S-transferase 2	Giulation S Transferasa
02000235728_17	beauveria	ADADNENDTO		Clutathiono & transforces array 1	Clutotión C Trocoferent
6275	passiana	AUAZINGN913	3	Giutathione S-transferase omega-1	Giutation S Transferasa

UP000235728_17	Beauveria	A0A2N6NDB	A0A2N6ND		
6275	bassiana	9	B9	Glutathione S-transferase omega-1	Glutatión S Transferasa
UP000235728_17	Beauveria		A0A2N6P1E		
6275	bassiana	A0A2N6P1E7	7	Glutathione S-transferase omega-like 2	Glutatión S Transferasa
UP000235728_17	Beauveria		A0A2N6NY4		
6275	bassiana	A0A2N6NY47	7	Glutathione S-transferase zeta class	Glutatión S Transferasa
UP000235728_17	Beauveria		A0A2N6N9F	GST N-terminal domain-containing	
6275	bassiana	A0A2N6N9F7	7	protein	GST N-terminal
UP000235728_17	Beauveria		A0A2N6N9Y	GST N-terminal domain-containing	
6275	bassiana	A0A2N6N9Y2	2	protein	GST N-terminal
UP000235728_17	Beauveria		A0A2N6NY7	GST N-terminal domain-containing	
6275	bassiana	A0A2N6NY76	6	protein	GST N-terminal
UP000235728_17	Beauveria		A0A2N6NJH		
6275	bassiana	A0A2N6NJH1	1	H15 domain-containing protein	H15
UP000235728_17	Beauveria		A0A2N6NX	HECT-type E3 ubiquitin transferase (EC	
6275	bassiana	A0A2N6NXB2	B2	2.3.2.26)	Transferasa
UP000235728_17	Beauveria		A0A2N6NG		
6275	bassiana	A0A2N6NGL8	L8	High-affinity glucose transporter	Glucosa transporter
UP000235728_17	Beauveria	A0A2N6NMC	A0A2N6NM		
6275	bassiana	5	C5	Isonitrile hydratase	Hidratasa
UP000235728_17	Beauveria		A0A2N6NT		
6275	bassiana	A0A2N6NTH4	H4	Isotrichodermin C-15 hydroxylase	Hidrolasa
UP000235728_17	Beauveria		A0A2N6NS1		
6275	bassiana	A0A2N6NS15	5	Linear gramicidin synthase subunit D	Sintasa
UP000235728_17	Beauveria		A0A2N6NC		
6275	bassiana	A0A2N6NCF7	F7	Lipase 6	Lipasa
UP000235728_17	Beauveria	A0A2N6NDQ	A0A2N6ND	Long chain acyl-CoA synthetase 7,	
6275	bassiana	8	Q8	peroxisomal	Sintetasa
UP000235728_17	Beauveria		A0A2N6P2P	Long chain acyl-CoA synthetase 7,	
6275	bassiana	A0A2N6P2P9	9	peroxisomal	Sintetasa
UP000235728_17	Beauveria	A0A2N6NCN	A0A2N6NC		
6275	bassiana	9	N9	Long-chain-fatty-acidCoA ligase 1	Ligasa
UP000235728_17	Beauveria		A0A2N6NK	Methylglutaconyl-CoA hydratase,	
6275	bassiana	A0A2N6NKS6	S6	mitochondrial	Hidratasa
UP000235728_17	Beauveria	A0A2N6NGE	A0A2N6NG		
6275	bassiana	3	E3	MFS glucose transporter mfs1	Glucosa transporter
UP000235728_17	Beauveria	A0A2N6NWC	A0A2N6NW	N-(5-amino-5-carboxypentanoyl)-L-	
6275	bassiana	3	C3	cysteinyl-D-valine synthase	Sintasa
UP000235728_17	Beauveria		A0A2N6NQ		
6275	bassiana	A0A2N6NQ13	13	Nonribosomal peptide synthetase 2	Sintetasa
UP000235728_17	Beauveria	A0A2N6NGT	A0A2N6NG		
6275	bassiana	9	Т9	Nonribosomal peptide synthetase 4	Sintetasa
UP000235728_17	Beauveria		A0A2N6NK		
6275	bassiana	A0A2N6NKK4	K4	Nonribosomal peptide synthetase 8	Sintetasa
UP000235728_17	Beauveria		A0A2N6N8V		
6275	bassiana	A0A2N6N8V4	4	Nonribosomal peptide synthetase dtxS1	Sintetasa
UP000235728_17	Beauveria		A0A2N6NE8		
6275	bassiana	A0A2N6NE81	1	Nonribosomal peptide synthetase dtxS1	Sintetasa
UP000235728_17	Beauveria		A0A2N6NE		
6275	bassiana	A0A2N6NEA0	A0	Nonribosomal peptide synthetase dtxS1	Sintetasa
UP000235728_17	Beauveria		A0A2N6NE		
6275	bassiana	A0A2N6NEA7	A7	Nonribosomal peptide synthetase dtxS1	Sintetasa
UP000235728_17	Beauveria		A0A2N6NVL		
6275	bassiana	A0A2N6NVL8	8	Nonribosomal peptide synthetase dtxS1	Sintetasa
UP000235728_17	Beauveria		A0A2N6P2V		
6275	bassiana	A0A2N6P2V1	1	Nonribosomal peptide synthetase dtxS1	Sintetasa
UP000235728_17	Beauveria		A0A2N6N84		
6275	bassiana	A0A2N6N846	6	O-methyltransferase bik3	Transferasa
				-	
				PAN2-PAN3 deadenvlation complex	
				subunit PAN3 (PAB1P-dependent	
UP000235728 17	Beauveria		A0A2N6NN	poly(A)-specific ribonuclease) (Polv(A)-	
6275	bassiana	A0A2N6NN10	10	nuclease deadenylation complex	Ribonucleasa
L		-	1		

				subunit 3) (PAN deadenylation complex	
				subunit 3)	
UP000235728 17	Beauveria		A0A2N6NRJ		
6275	bassiana	A0A2N6NRJ0	0	Phenylacetate 2-hydroxylase	Hidroxilasa
UP000235728 17	Beauveria		A0A2N6N9L	Polyketide synthase-nonribosomal	
6275	bassiana	A0A2N6N9L5	5	peptide synthetase	Sintetasa
UP000235728 17	Beauveria		A0A2N6NK		
6275	bassiana	A0A2N6NKA5	A5	Polyporopepsin	Polyporopepsina
UP000235728_17	Beauveria	A0A2N6NYC	A0A2N6NY		
6275	bassiana	7	C7	Polyporopensin	Polyporopensina
LIP000235728_17	Beauveria	,	4042N6P15	Probable alpha/beta-glucosidase add	i olyporopopolita
6275	bassiana	4042N6P155	5	(EC 3 2 1 20) (EC 3 2 1 21)	Glucosidasa
110000225729 17	Boouvorio			(20 3.2.1.20) (20 3.2.1.21)	Olicosidasa
0F000233720_17	beauveria		AUAZINOINKS	Draniany (CoA synthetese	Cintotopo
0275	Dassiaria	AUAZINDINKST		Propionyi-CoA synthetase	Sintetasa
UP000235728_17	Beauveria	AUA2N6NGC	AUA2N6NG	Destain add	
6275	bassiana	5	C5	Protein rds1	rds 1
UP000235728_17	Beauveria		A0A2N6NH	Putative 6-phosphotructo-2-kinase	
6275	bassiana	A0A2N6NHZ1	Ζ1	PB17E12.14c	Kinasa
UP000235728_17	Beauveria		A0A2N6NA2		
6275	bassiana	A0A2N6NA24	4	Putative acyl-coenzyme A synthetase	Sintetasa
UP000235728_17	Beauveria	A0A2N6NAC	A0A2N6NA	Putative ATP-dependent helicase	
6275	bassiana	4	C4	C17A2.12	Helicasa
UP000235728_17	Beauveria	A0A2N6NDA	A0A2N6ND	Putative formaldehyde dehydrogenase	
6275	bassiana	9	A9	AdhA	Dehidrogenasa
UP000235728_17	Beauveria		A0A2N6NID		
6275	bassiana	A0A2N6NID1	1	Putative glucan 1,3-beta-glucosidase D	GLucosidasa
UP000235728_17	Beauveria		A0A2N6NU	Putative glucan endo-1,3-beta-	
6275	bassiana	A0A2N6NU96	96	glucosidase eglC	GLucosidasa
UP000235728 17	Beauveria		A0A2N6N8		
6275	bassiana	A0A2N6N8C9	C9	Putative glucose transporter rco-3	Glucosa transporter
UP000235728 17	Beauveria	A0A2N6NSW	A0A2N6NS		•
6275	bassiana	7	W7	Putative glycosyl hydrolase	Hidrolasa
UP000235728 17	Beauveria		A0A2N6N7	Putative NADPH-dependent	
6275	bassiana	A0A2N6NZD7	D7	methylglyoxal reductase GRP2	Reductasa
UP000235728_17	Beauveria		A0A2N6NU		
6275	bassiana	A0A2N6NI 138	38	Putative secreted alvcosidase	Glicosidasa
LIP000235728 17	Beauveria	10121010000			Choosidada
6275	bassiana		75	Pyrimidodiazanina synthasa	Sintasa
UD000225729 17	Poolinia	AUAZINUNI II J			Sintasa
0F000233720_17 6275	beauveria			Posponso regulator mos4	Poguladar da raspuesta
0275	Dassialia			Response regulator mos4	Regulation de l'espliesta
0F000233720_17	beauveria	AUAZINONWS	AUAZINONW		Deductore
0270	Dassiaria		91	(EC 1.17.4.1)	Reductasa
UP000235728_17	Beauveria	AUA2N6NW1	AUA2N6NW		
6275	bassiana	8	18	RNA nelicase (EC 3.6.4.13)	Helicasa
UP000235728_17	Beauveria	A0A2N6NXR	A0A2N6NX	rRNA adenine N(6)-methyltransferase	
6275	bassiana	6	R6	(EC 2.1.1)	Transferasa
LIP000235728 17	Reauveria		A0A2N6NR	Serine/threonine-protein phosphatase 6	
6275	bassiana		FO	regulatory ankyrin repeat subunit A	Fosfatasa
110000225729 17	Boouvorio			regulatory ankynn repeat subunit A	1 03141434
6275	bassiana	2	M2	Signaling protein VkoW	Proteína de señalizacio n
11000025720 17	Beauvaria	2			i iotoma de sendiizadio II
6275	bassiana	ADA 2NIENDE 4	AUAZINDIN95	SI H domain containing protain	сı Ц
UZ10	Decumente	707211011934			JLN
0000235728_17	beauveria			Sphingolu long-chain base transporter	Transporter
02/5	passiaha			KOBI	ransporter
0P000235728_17	Beauveria	AUA2N6NWT	AUA2N6NW		Dener
6275	passiana	(17	Suirate permease 2	Permeasa
UP000235728_17	Beauveria		A0A2N6NGI		
6275	bassiana	A0A2N6NGI1	1	Superoxide dismutase (EC 1.15.1.1)	Superóxido dismutasa

UP000235728_17	Beauveria		A0A2N6NX1		
6275	bassiana	A0A2N6NX18	8	Superoxide dismutase (EC 1.15.1.1)	Superóxido dismutasa
UP000235728_17	Beauveria	A0A2N6NSC	A0A2N6NS		
6275	bassiana	9	C9	Transcriptional regulator	Regulador transcripcional
UP000235728_17	Beauveria		A0A2N6NVL		
6275	bassiana	A0A2N6NVL7	7	Trichodiene oxygenase	Oxigenasa
UP000235728_17	Beauveria		A0A2N6NV	Trichodiene synthase (EC 4.2.3.6)	
6275	bassiana	A0A2N6NVK9	K9	(Sesquiterpene cyclase)	Sintasa
UP000235728_17	Beauveria	A0A2N6NWA	A0A2N6NW		
6275	bassiana	4	A4	Tyrocidine synthase 3	Sintasa
UP000235728_17	Beauveria		A0A2N6NF	U3 small nucleolar RNA-associated	
6275	bassiana	A0A2N6NFA9	A9	protein 17	Proteína asociada a ARN
UP000235728_17	Beauveria		A0A2N6P2J		
6275	bassiana	A0A2N6P2J4	4	UDP-glucose 4-epimerase (EC 5.1.3.2)	Epimerasa
UP000235728_17	Beauveria		A0A2N6N8P	UDP-glucose:glycoprotein	
6275	bassiana	A0A2N6N8P1	1	glucosyltransferase	Transferasa
UP000235728_17	Beauveria		A0A2N6P0Y		
6275	bassiana	A0A2N6P0Y4	4	Uncharacterized protein	Sin caracterizar
UP000235728_17	Beauveria	A0A2N6N7W	A0A2N6N7		
6275	bassiana	0	W0	Uncharacterized protein C18B11.08c	Sin caracterizar
UP000235728_17	Beauveria	A0A2N6NUV	A0A2N6NU		
6275	bassiana	7	V7	Uncharacterized protein C26F1.08c	Sin caracterizar
UP000235728_17	Beauveria	A0A2N6NGD	A0A2N6NG		
6275	bassiana	5	D5	UPF0518 protein	UPF0518
UP000235728_17	Beauveria		A0A2N6N8B		
6275	bassiana	A0A2N6N8B1	1	Xylanolytic transcriptional activator xInR	Activador transcripcional

Beauveria bassiana	Número	Porcentaje	Porcentaje acumulado
Sintetasa	16	13,22	13,22
Sintasa	12	9,92	23,14
Quitinasa	11	9,09	32,23
Glutatión S Transferasa	12	9.92	42.1
Transferasa	4	3,31	42,97
Helicasa	3	2,48	45,45
Glucosa transporter	3	2,48	50,41
Glucosidasa	3	2,48	52,89
Sin caracterizar	3	2,48	55,37
Ligasa	2	1,65	57,02
Catalasa	2	1,65	58,67
Proteína del retículo endoplasmático	2	1,65	60,33
Hidratasa	2	1,65	61,98
Hidrolasa	2	1,65	63,63
Polyporopepsina	2	1,65	65,29
Reductasa	2	1,65	66,94

Superóxido dismutasa	2	1,65	68,59
40S ribosomal S3	1	0,83	69,42
Ald_Xan_dh_C2	1	0,83	70,24
Arabinofuranosidasa	1	0,83	71,07
Aminopeptidasa	1	0,83	71,90
Antifúngica	1	0,83	72,72
Proteasa	1	0,83	73,55
ATPasa	1	0,83	74,38
Choriogenin Hminor	1	0,83	75,20
Liasa	1	0,83	76,03
Cit P450 monooxigenasa	1	0,83	76,86
Peptidasa	1	0,83	77,68
Polimerasa	1	0,83	78,51
Proteína unión ADN	1	0,83	79,34
DUF4048	1	0,83	80,16
DNM1	1	0,83	80,99
Factor de elongación	1	0,83	81,82
Glucoamilasa	1	0,83	82,64
Acetiltransferasa	1	0,83	83,47
H15	1	0,83	84,29
Lipasa	1	0,83	85,12
Ribonucleasa	1	0,83	85,95
Hidroxilasa	1	0,83	86,77
rds1	1	0,83	87,60
Kinasa	1	0,83	88,43
Dehidrogenasa	1	0,83	89,25
Glicosidasa	1	0,83	90,08
Regulador de respuesta	1	0,83	90,91
Fosfatasa	1	0,83	91,73
Proteína de señalización	1	0,83	92,56
SLH	1	0,83	93,39

Transporter	1	0,83	94,21
Permeasa	1	0,83	95,04
Regulador transcripcional	1	0,83	95,86
Oxigenasa	1	0,83	96,69
Proteína asociada a ARN	1	0,83	97,52
Epimerasa	1	0,83	98,34
UPF0518	1	0,83	99,17
Activador transcripcional	1	0,83	100,00

Identificación de las 168 proteínas homólogas de Fusarium sp. y curado

proteoma	Especie	homologas encontradas	Entry	Protein names	Curado proteinas
UP000626568_26924 28	Fusarium sp.	A0A8H4YDF5	A0A8H4 YDF5	4-coumarateCoA ligase-like 7	Ligasa
UP000626568_26924 28	Fusarium sp.	A0A8H4Y332	A0A8H4 Y332	AAA_23 domain-containing protein	AAA
UP000626568_26924 28	Fusarium sp.	A0A8H5DH25	A0A8H5DH25 A0A8H5 Abhydrol DH25 contai		Hidrolasa
UP000626568_26924 28	Fusarium sp.	A0A8H5DGV4	A0A8H5 DGV4	Acetyl-coenzyme A synthetase (EC 6.2.1.1)	Sintetasa
UP000626568_26924 28	Fusarium sp.	A0A8H5DGT0	A0A8H5 DGT0	Activating signal cointegrator 1 complex subunit 3	Activador de señal
UP000626568_26924 28	Fusarium sp.	A0A8H4Y424	A0A8H4 Y424	Acyl-CoA synthetase Yngl	Sintetasa
UP000626568_26924 28	Fusarium sp.	A0A8H4Y758	A0A8H4 Y758	Aldo_ket_red domain-containing protein	Aldo_ket_red
UP000626568_26924 28	Fusarium sp.	A0A8H4V3Q1	A0A8H4 V3Q1	alpha-1,2-Mannosidase (EC 3.2.1)	Manosidasa
UP000626568_26924 28	Fusarium sp.	A0A8H4XFR3	A0A8H4 XFR3	alpha-amylase (EC 3.2.1.1)	Amilasa
UP000626568_26924 28	Fusarium sp.	A0A8H4UWK0	A0A8H4 UWK0	Alpha-L-arabinofuranosidase (EC 3.2.1.55)	Alfa-L- arabinofuranosidasa
UP000626568_26924 28	Fusarium sp.	A0A8H4XR01	A0A8H4 XR01	Alpha-L-arabinofuranosidase (EC 3.2.1.55)	Alfa-L- arabinofuranosidasa
UP000626568_26924 28	Fusarium sp.	A0A8H5DAP7	A0A8H5 DAP7	Alpha-L-arabinofuranosidase (EC 3.2.1.55)	Alfa-L- arabinofuranosidasa
UP000626568_26924 28	Fusarium sp.	A0A8H4YBK0	A0A8H4 YBK0	AMP-binding domain protein	Proteína de unión AMP
UP000626568_26924 28	Fusarium sp.	A0A8H4SR46	A0A8H4 SR46	AMP-binding domain-containing protein	Proteína de unión AMP

UP000626568_26924 28	Fusarium sp.	A0A8H4T725	A0A8H4 T725	AMP-binding domain-containing protein	Proteína de unión AMP
UP000626568_26924 28	Fusarium sp.	A0A8H4UX42	A0A8H4 UX42	AMP-binding domain-containing protein	Proteína de unión AMP
UP000626568_26924 28	Fusarium sp.	A0A8H4UXP5	A0A8H4 UXP5	AMP-binding domain-containing protein	Proteína de unión AMP
UP000626568_26924 28	Fusarium sp.	A0A8H4UYX3	A0A8H4 UYX3	AMP-binding domain-containing protein	Proteína de unión AMP
UP000626568_26924 28	Fusarium sp.	A0A8H4V1B6	A0A8H4 V1B6	AMP-binding domain-containing protein	Proteína de unión AMP
UP000626568_26924 28	Fusarium sp.	A0A8H4V4P8	A0A8H4 V4P8	AMP-binding domain-containing protein	Proteína de unión AMP
UP000626568_26924 28	Fusarium sp.	A0A8H4X8K9	A0A8H4 X8K9	AMP-binding domain-containing protein	Proteína de unión AMP
UP000626568_26924 28	Fusarium sp.	A0A8H4XR36	A0A8H4 XR36	AMP-binding domain-containing protein	Proteína de unión AMP
UP000626568_26924 28	Fusarium sp.	A0A8H4XSC3	A0A8H4 XSC3	AMP-binding domain-containing protein	Proteína de unión AMP
UP000626568_26924 28	Fusarium sp.	A0A8H4XUT6	A0A8H4 XUT6	AMP-binding domain-containing protein	Proteína de unión AMP
UP000626568_26924 28	Fusarium sp.	A0A8H4XWJ0	A0A8H4 XWJ0	AMP-binding domain-containing protein	Proteína de unión AMP
UP000626568_26924 28	Fusarium sp.	A0A8H4XWS0	A0A8H4 XWS0	AMP-binding domain-containing protein	Proteína de unión AMP
UP000626568_26924 28	Fusarium sp.	A0A8H4XXI8	A0A8H4 XXI8	AMP-binding domain-containing protein	Proteína de unión AMP
UP000626568_26924 28	Fusarium sp.	A0A8H4Y4U9	A0A8H4 Y4U9	AMP-binding domain-containing protein	Proteína de unión AMP
UP000626568_26924 28	Fusarium sp.	A0A8H5DBK1	A0A8H5 DBK1	AMP-binding domain-containing protein	Proteína de unión AMP
UP000626568_26924 28	Fusarium sp.	A0A8H5DBM6	A0A8H5 DBM6	AMP-binding domain-containing protein	Proteína de unión AMP
UP000626568_26924 28	Fusarium sp.	A0A8H4XWU4	A0A8H4 XWU4	Beta-lactamase-type transpeptidase fold domain containing protein	Beta-lactamasa
UP000626568_26924 28	Fusarium sp.	A0A8H4UW41	A0A8H4 UW41	BTB domain-containing protein	BTB
UP000626568_26924 28	Fusarium sp.	A0A8H5DGM8	A0A8H5 DGM8	Calcium-transporting ATPase (EC 7.2.2.10)	Transportador ATP
UP000626568_26924 28	Fusarium sp.	A0A8H4V221	A0A8H4 V221	Carrier domain-containing protein	Carrier
UP000626568_26924 28	Fusarium sp.	A0A8H4XQW2	A0A8H4 XQW2	Carrier domain-containing protein	Carrier
UP000626568_26924 28	Fusarium sp.	A0A8H4XRS2	A0A8H4 XRS2	Carrier domain-containing protein	Carrier
UP000626568_26924 28	Fusarium sp.	A0A8H4XSR6	A0A8H4 XSR6	Carrier domain-containing protein	Carrier
UP000626568_26924 28	Fusarium sp.	A0A8H4XYR7	A0A8H4 XYR7	Carrier domain-containing protein	Carrier

UP000626568_26924 28	Fusarium sp.	A0A8H4Y0V3	A0A8H4 Y0V3	Carrier domain-containing protein	Carrier
UP000626568_26924 28	Fusarium sp.	A0A8H4Y2Q3	A0A8H4 Y2Q3	Carrier domain-containing protein	Carrier
UP000626568_26924 28	Fusarium sp.	A0A8H4Y456	A0A8H4 Y456	Carrier domain-containing protein	Carrier
UP000626568_26924 28	Fusarium sp.	A0A8H4Y7D0	A0A8H4 Y7D0	Carrier domain-containing protein	Carrier
UP000626568_26924 28	Fusarium sp.	A0A8H4YAG8	A0A8H4 YAG8	Carrier domain-containing protein	Carrier
UP000626568_26924 28	Fusarium sp.	A0A8H4YD68	A0A8H4 YD68	Carrier domain-containing protein	Carrier
UP000626568_26924 28	Fusarium sp.	A0A8H4YDQ9	A0A8H4 YDQ9	Carrier domain-containing protein	Carrier
UP000626568_26924 28	Fusarium sp.	A0A8H4YE10	A0A8H4 YE10	Carrier domain-containing protein	Carrier
UP000626568_26924 28	Fusarium sp.	A0A8H5DDC9	A0A8H5 DDC9	Carrier domain-containing protein	Carrier
UP000626568_26924 28	Fusarium sp.	A0A8H5DGP1	A0A8H5 DGP1	Carrier domain-containing protein	Carrier
UP000626568_26924 28	Fusarium sp.	A0A8H4UYJ2	A0A8H4 UYJ2	catalase (EC 1.11.1.6)	Catalasa
UP000626568_26924 28	Fusarium sp.	A0A8H5DEA8	A0A8H5 DEA8	Catalase (EC 1.11.1.6)	Catalasa
UP000626568_26924 28	Fusarium sp.	A0A8H5DD10	A0A8H5 DD10	Cation_ATPase_N domain- containing protein	ATPasa
UP000626568_26924 28	Fusarium sp.	A0A8H4UYF7	A0A8H4 UYF7	Cation-transporting ATPase	ATPasa
UP000626568_26924 28	Fusarium sp.	A0A8H5DH93	A0A8H5 DH93	Ceramide very long chain fatty acid hydroxylase (EC 1)	Hidrolasa
UP000626568_26924 28	Fusarium sp.	A0A8H4XWA5	A0A8H4 XWA5	chitinase (EC 3.2.1.14)	Quitinasa
UP000626568_26924 28	Fusarium sp.	A0A8H4Y2N9	A0A8H4 Y2N9	chitinase (EC 3.2.1.14)	Quitinasa
UP000626568_26924 28	Fusarium sp.	A0A8H4Y4Y2	A0A8H4 Y4Y2	chitinase (EC 3.2.1.14)	Quitinasa
UP000626568_26924 28	Fusarium sp.	A0A8H4Y5X8	A0A8H4 Y5X8	chitinase (EC 3.2.1.14)	Quitinasa
UP000626568_26924 28	Fusarium sp.	A0A8H4Y6H6	A0A8H4 Y6H6	chitinase (EC 3.2.1.14)	Quitinasa
UP000626568_26924 28	Fusarium sp.	A0A8H4Y6Q9	A0A8H4 Y6Q9	chitinase (EC 3.2.1.14)	Quitinasa
UP000626568_26924 28	Fusarium sp.	A0A8H4Y922	A0A8H4 Y922	chitinase (EC 3.2.1.14)	Quitinasa
UP000626568_26924 28	Fusarium sp.	A0A8H4YDQ1	A0A8H4 YDQ1	chitinase (EC 3.2.1.14)	Quitinasa
UP000626568_26924 28	Fusarium sp.	A0A8H5DDE2	A0A8H5 DDE2	chitinase (EC 3.2.1.14)	Quitinasa

UP000626568_26924 28	Fusarium sp.	A0A8H5DH36	A0A8H5 DH36	chitinase (EC 3.2.1.14)	Quitinasa
UP000626568_26924 28	Fusarium sp.	A0A8H4UDJ9	A0A8H4 UDJ9	Condensation domain-containing protein	Condensation domain-containing protein
UP000626568_26924 28	Fusarium sp.	A0A8H4Y3M6	A0A8H4 Y3M6	CVNH domain-containing protein	CVNH
UP000626568_26924 28	Fusarium sp.	A0A8H4UXQ3	A0A8H4 UXQ3	Cytochrome P450	Citocromo P450
UP000626568_26924 28	Fusarium sp.	A0A8H4V050	A0A8H4 V050	Cytochrome P450	Citocromo P450
UP000626568_26924 28	Fusarium sp.	A0A8H4XXN1	A0A8H4 XXN1	Cytochrome P450	Citocromo P450
UP000626568_26924 28	Fusarium sp.	A0A8H4Y194	A0A8H4 Y194	Cytochrome P450	Citocromo P450
UP000626568_26924 28	Fusarium sp.	A0A8H5DE52	A0A8H5 DE52	Cytochrome P450	Citocromo P450
UP000626568_26924 28	Fusarium sp.	A0A8H5DK01	A0A8H5 DK01	Cytochrome P450	Citocromo P450
UP000626568_26924 28	Fusarium sp.	A0A8H4V2A0	A0A8H4 V2A0	DAO domain-containing protein	DAO
UP000626568_26924 28	Fusarium sp.	A0A8H4USC1	A0A8H4 USC1	Dehydrogenase/reductase SDR family member 11	Reductasa
UP000626568_26924 28	Fusarium sp.	A0A8H4V534	A0A8H4 V534	Dipeptidase (EC 3.4.13.19)	Dipeptidasa
UP000626568_26924 28	Fusarium sp.	A0A8H4Y9W6	A0A8H4 Y9W6	Dipeptidase (EC 3.4.13.19)	Dipeptidasa
UP000626568_26924 28	Fusarium sp.	A0A8H4SN59	A0A8H4 SN59	DUF3398 domain-containing protein	DUF3398
UP000626568_26924 28	Fusarium sp.	A0A8H4YC34	A0A8H4 YC34	DUF4484 domain-containing protein	DUF4484
UP000626568_26924 28	Fusarium sp.	A0A8H4YEM2	A0A8H4 YEM2	DUF4962 domain-containing protein	DUF4962
UP000626568_26924 28	Fusarium sp.	A0A8H4V3M8	A0A8H4 V3M8	DUF5923 domain-containing protein	DUF5923
UP000626568_26924 28	Fusarium sp.	A0A8H4UX20	A0A8H4 UX20	Endopolygalacturonase	Poligalacturonasa
UP000626568_26924 28	Fusarium sp.	A0A8H4V461	A0A8H4 V461	Endopolygalacturonase 1	Poligalacturonasa
UP000626568_26924 28	Fusarium sp.	A0A8H4UWV4	A0A8H4 UWV4	Enoyl reductase (ER) domain- containing protein	Reductasa
UP000626568_26924 28	Fusarium sp.	A0A8H4XIV8	A0A8H4 XIV8	Enoyl reductase (ER) domain- containing protein	Reductasa
UP000626568_26924 28	Fusarium sp.	A0A8H4UWL3	A0A8H4 UWL3	FERM domain-containing protein	FERM
UP000626568_26924 28	Fusarium sp.	A0A8H5DB20	A0A8H5 DB20	FNIP_N domain-containing protein	FNIP_N
UP000626568_26924 28	Fusarium sp.	A0A8H4UM80	A0A8H4 UM80	GH18 domain-containing protein	GH18

UP000626568_26924 28	Fusarium sp.	A0A8H4V0P0	A0A8H4 V0P0	GH18 domain-containing protein	GH18
UP000626568_26924 28	Fusarium sp.	A0A8H4XYH0	A0A8H4 XYH0	Glucoamylase (EC 3.2.1.3) (1,4- alpha-D-glucan glucohydrolase) (Glucan 1,4-alpha-glucosidase)	Glucoamilasa
UP000626568_26924 28	Fusarium sp.	A0A8H4Y0K0	A0A8H4 Y0K0	Glucoamylase (EC 3.2.1.3) (1,4- alpha-D-glucan glucohydrolase) (Glucan 1,4-alpha-glucosidase)	Glucoamilasa
UP000626568_26924 28	Fusarium sp.	A0A8H4XRN1	A0A8H4 XRN1	Glutathione S-transferase	Glutatión S- transferasa
UP000626568_26924 28	Fusarium sp.	A0A8H4XV71	A0A8H4 XV71	Glutathione S-transferase	Glutatión S- transferasa
UP000626568_26924 28	Fusarium sp.	A0A8H4XXJ7	A0A8H4 XXJ7	Glutathione S-transferase	Glutatión S- transferasa
UP000626568_26924 28	Fusarium sp.	A0A8H4Y714	A0A8H4 Y714	Glutathione S-transferase	Glutatión S- transferasa
UP000626568_26924 28	Fusarium sp.	A0A8H4YCH0	A0A8H4 YCH0	Glutathione S-transferase	Glutatión S- transferasa
UP000626568_26924 28	Fusarium sp.	A0A8H5DBC9	A0A8H5 DBC9	Glutathione S-transferase	Glutatión S- transferasa
UP000626568_26924 28	Fusarium sp.	A0A8H5DCR8	A0A8H5 DCR8	Glutathione S-transferase	Glutatión S- transferasa
UP000626568_26924 28	Fusarium sp.	A0A8H5DGA8	A0A8H5 DGA8	Glutathione S-transferase	Glutatión S- transferasa
UP000626568_26924 28	Fusarium sp.	A0A8H4Y954	A0A8H4 Y954	Glutathione S-transferase II	Glutatión S- transferasa
UP000626568_26924 28	Fusarium sp.	A0A8H4V159	A0A8H4 V159	Glyco_hydro_15 domain- containing protein	Glyco_hydro_15
UP000626568_26924 28	Fusarium sp.	A0A8H4UWK4	A0A8H4 UWK4	GST C-terminal domain- containing protein	GST C-terminal
UP000626568_26924 28	Fusarium sp.	A0A8H4V0C2	A0A8H4 V0C2	GST C-terminal domain- containing protein	GST C-terminal
UP000626568_26924 28	Fusarium sp.	A0A8H4Y6Y2	A0A8H4 Y6Y2	GST C-terminal domain- containing protein	GST C-terminal
UP000626568_26924 28	Fusarium sp.	A0A8H4UWG9	A0A8H4 UWG9	GST N-terminal domain- containing protein	GST C-terminal
UP000626568_26924 28	Fusarium sp.	A0A8H4V476	A0A8H4 V476	GST N-terminal domain- containing protein	GST C-terminal
UP000626568_26924 28	Fusarium sp.	A0A8H4XRJ6	A0A8H4 XRJ6	GST N-terminal domain- containing protein	GST C-terminal
UP000626568_26924 28	Fusarium sp.	A0A8H4XXG3	A0A8H4 XXG3	GST N-terminal domain- containing protein	GST C-terminal
UP000626568_26924 28	Fusarium sp.	A0A8H4Y074	A0A8H4 Y074	GST N-terminal domain- containing protein	GST C-terminal
UP000626568_26924 28	Fusarium sp.	A0A8H4YB71	A0A8H4 YB71	GST N-terminal domain- containing protein	GST C-terminal
UP000626568_26924 28	Fusarium sp.	A0A8H4YEG6	A0A8H4 YEG6	GST N-terminal domain- containing protein	GST C-terminal

UP000626568_26924 28	Fusarium sp.	A0A8H4YEX7	A0A8H4 YEX7	GST N-terminal domain- containing protein	GST C-terminal
UP000626568_26924 28	Fusarium sp.	A0A8H5DGC3	A0A8H5 DGC3	GST N-terminal domain- containing protein	GST C-terminal
UP000626568_26924 28	Fusarium sp.	A0A8H5DIK2	A0A8H5 DIK2	GST N-terminal domain- containing protein	GST C-terminal
UP000626568_26924 28	Fusarium sp.	A0A8H4XQL2	A0A8H4 XQL2	GTP-binding protein	Proteína unión GTP
UP000626568_26924 28	Fusarium sp.	A0A8H4Y5C8	A0A8H4 Y5C8	Haloacid dehalogenase	Dehalogenasa
UP000626568_26924 28	Fusarium sp.	A0A8H5DKL3	A0A8H5 DKL3	histidine kinase (EC 2.7.13.3)	Kinasa
UP000626568_26924 28	Fusarium sp.	A0A8H5DC50	A0A8H5 DC50	HTH APSES-type domain- containing protein	HTH APSES-type
UP000626568_26924 28	Fusarium sp.	A0A8H4XWW9	A0A8H4 XWW9	Hydrophobin	Hidrofobina
UP000626568_26924 28	Fusarium sp.	A0A8H5DIR6	A0A8H5 DIR6	Hydroxamate-type ferrichrome siderophore peptide synthetase	Sintetasa
UP000626568_26924 28	Fusarium sp.	A0A8H4XTP5	A0A8H4 XTP5	J domain-containing protein	J
UP000626568_26924 28	Fusarium sp.	A0A8H5DD11	A0A8H5 DD11	JmjC domain-containing protein	JmjC
UP000626568_26924 28	Fusarium sp.	A0A8H4UW47	A0A8H4 UW47	Ketoreductase (KR) domain- containing protein	Reductasa
UP000626568_26924 28	Fusarium sp.	A0A8H4UQ80	A0A8H4 UQ80	Ketosynthase (KS) domain- containing protein	Reductasa
UP000626568_26924 28	Fusarium sp.	A0A8H4UQH2	A0A8H4 UQH2	Ketosynthase (KS) domain- containing protein	Reductasa
UP000626568_26924 28	Fusarium sp.	A0A8H4UWH5	A0A8H4 UWH5	Ketosynthase (KS) domain- containing protein	Reductasa
UP000626568_26924 28	Fusarium sp.	A0A8H4UY87	A0A8H4 UY87	Ketosynthase (KS) domain- containing protein	Reductasa
UP000626568_26924 28	Fusarium sp.	A0A8H4XTY1	A0A8H4 XTY1	Ketosynthase (KS) domain- containing protein	Reductasa
UP000626568_26924 28	Fusarium sp.	A0A8H5DBF4	A0A8H5 DBF4	KH type-2 domain-containing protein	KH type-2
UP000626568_26924 28	Fusarium sp.	A0A8H4Y162	A0A8H4 Y162	MACPF domain-containing protein	MACPF
UP000626568_26924 28	Fusarium sp.	A0A8H4V0A7	A0A8H4 V0A7	Malonyl-CoA:ACP transacylase (MAT) domain-containing protein	Transacilasa
UP000626568_26924 28	Fusarium sp.	A0A8H4XU18	A0A8H4 XU18	Malonyl-CoA:ACP transacylase (MAT) domain-containing protein	Transacilasa
UP000626568_26924 28	Fusarium sp.	A0A8H4Y910	A0A8H4 Y910	Malonyl-CoA:ACP transacylase (MAT) domain-containing protein	Transacilasa
UP000626568_26924 28	Fusarium sp.	A0A8H4Y4Y3	A0A8H4 Y4Y3	Methyltransferase-like protein 7B	Metiltransferasa
UP000626568_26924 28	Fusarium sp.	A0A8H4Y3S9	A0A8H4 Y3S9	MFS domain-containing protein	MFS

UP000626568_26924 28	Fusarium sp.	A0A8H4Y5S6	A0A8H4 Y5S6	MFS domain-containing protein	MFS
UP000626568_26924 28	Fusarium sp.	A0A8H4YD18	A0A8H4 YD18	MFS domain-containing protein	MFS
UP000626568_26924 28	Fusarium sp.	A0A8H4XS97	A0A8H4 XS97	MFS general substrate transporter	Transporter
UP000626568_26924 28	Fusarium sp.	A0A8H4Y5Q3	A0A8H4 Y5Q3	Mitochondrial ribosomal protein subunit L20-domain-containing protein	Mitocondrial Ribosomal
UP000626568_26924 28	Fusarium sp.	A0A8H4Y3R7	A0A8H4 Y3R7	NAD(P)-bd_dom domain- containing protein	Proteína de unión NAD(P)
UP000626568_26924 28	Fusarium sp.	A0A8H5DD56	A0A8H5 DD56	NAD(P)-bd_dom domain- containing protein	Proteína de unión NAD(P)
UP000626568_26924 28	Fusarium sp.	A0A8H4V0C4	A0A8H4 V0C4	NmrA domain-containing protein	NmrA
UP000626568_26924 28	Fusarium sp.	A0A8H4Y3R1	A0A8H4 Y3R1	NmrA domain-containing protein	NmrA
UP000626568_26924 28	Fusarium sp.	A0A8H4UZU2	A0A8H4 UZU2	Oxidoreductase	Reductasa
UP000626568_26924 28	Fusarium sp.	A0A8H4Y8N3	A0A8H4 Y8N3	Peptidase A1 domain-containing protein	Peptidasa
UP000626568_26924 28	Fusarium sp.	A0A8H4V3C4	A0A8H4 V3C4	Peptidase_M16_C domain- containing protein	Peptidasa
UP000626568_26924 28	Fusarium sp.	A0A8H4V2G9	A0A8H4 V2G9	PepX_C domain-containing protein	PepX_C
UP000626568_26924 28	Fusarium sp.	A0A8H4XS75	A0A8H4 XS75	Phenylacetate 2-hydroxylase	Hidrolasa
UP000626568_26924 28	Fusarium sp.	A0A8H4XZS1	A0A8H4 XZS1	Phenylacetyl-CoA ligase	Ligasa
UP000626568_26924 28	Fusarium sp.	A0A8H4ULA3	A0A8H4 ULA3	Polygalacturonase 3	Poligalacturonasa
UP000626568_26924 28	Fusarium sp.	A0A8H4Y2X0	A0A8H4 Y2X0	Polyketide synthase	Sintasa
UP000626568_26924 28	Fusarium sp.	A0A8H5DBZ1	A0A8H5 DBZ1	Pre-mRNA-splicing factor clf1	Factor de splicing
UP000626568_26924 28	Fusarium sp.	A0A8H4XY89	A0A8H4 XY89	Propionyl-CoA synthetase	Sintetasa
UP000626568_26924 28	Fusarium sp.	A0A8H4XX08	A0A8H4 XX08	Protein kinase domain-containing protein	Kinasa
UP000626568_26924 28	Fusarium sp.	A0A8H4Y0D7	A0A8H4 Y0D7	Protein OS-9 homolog	Protein OS-9 homolog
UP000626568_26924 28	Fusarium sp.	A0A8H4XYS5	A0A8H4 XYS5	Reverse transcriptase domain- containing protein	Transcriptasa
UP000626568_26924 28	Fusarium sp.	A0A8H4YEK7	A0A8H4 YEK7	Ribosome biogenesis regulatory protein	Proteína regulatoria
UP000626568_26924 28	Fusarium sp.	A0A8H4XVS3	A0A8H4 XVS3	Rif1_N domain-containing protein	Rif1_N
UP000626568_26924 28	Fusarium sp.	A0A8H4XZK9	A0A8H4 XZK9	RNA polymerase III transcription factor	Polimerasa

UP000626568_26924 28	Fusarium sp.	A0A8H4V094	A0A8H4 V094	SANT domain-containing protein	SANT
UP000626568_26924 28	Fusarium sp.	A0A8H4Y7W7	A0A8H4 Y7W7	SEA domain-containing protein	SEA
UP000626568_26924 28	Fusarium sp.	A0A8H4XT28	A0A8H4 XT28	Sorbitol dehydrogenase	Dehidrogenasa
UP000626568_26924 28	Fusarium sp.	A0A8H4Y0A4	A0A8H4 Y0A4	Superoxide dismutase (EC 1.15.1.1)	Superóxido dismutasa
UP000626568_26924 28	Fusarium sp.	A0A8H4Y9S7	A0A8H4 Y9S7	Superoxide dismutase (EC 1.15.1.1)	Superóxido dismutasa
UP000626568_26924 28	Fusarium sp.	A0A8H5DDM5	A0A8H5 DDM5	Transcriptional adapter 2	Transcriptional adapter 2
UP000626568_26924 28	Fusarium sp.	A0A8H4UX71	A0A8H4 UX71	tRNA_lig_CPD domain- containing protein	Ligasa
UP000626568_26924 28	Fusarium sp.	A0A8H4V4M1	A0A8H4 V4M1	Uracil permease	Permeasa
UP000626568_26924 28	Fusarium sp.	A0A8H4Y251	A0A8H4 Y251	Zn(2)-C6 fungal-type domain- containing protein	Zn(2)-C6 fungal-type
UP000626568_26924 28	Fusarium sp.	A0A8H5DAU8	A0A8H5 DAU8	Zn(2)-C6 fungal-type domain- containing protein	Zn(2)-C6 fungal-type
UP000626568_26924 28	Fusarium sp.	A0A8H5DGG0	A0A8H5 DGG0	Zn(2)-C6 fungal-type domain- containing protein	Zn(2)-C6 fungal-type

<i>Fusarium</i> sp.	Número	Porcentaje	Porcentaje acumulado
Proteína de unión AMP	18	10,71	10,71
Carrier	15	8,93	19,64
Glutatión S-transferasa	22.0	13.1	32.7
Quitinasa	10	5,95	33,33
Reductasa	10	5,95	39,28
Citocromo P450	6	3,57	48,21
Sintetasa	4	2,38	50,59
Ligasa	3	1,79	52,38
Hidrolasa	3	1,79	54,16
Arabinofuranosidasa	3	1,79	55,95
Poligalacturonasa	3	1,79	57,73
Transacilasa	3	1,79	59,52
MFS	3	1,79	61,31
Zn(2)-C6 fungal-type	3	1,79	63,09
Catalasa	2	1,19	64,28

ATPasa	2	1,19	65,47
Dipeptidasa	2	1,19	66,66
Glucoamilasa	2	1,19	67,85
Kinasa	2	1,19	69,04
Proteína de unión NAD(P)	2	1,19	70,23
NmrA	2	1,19	71,42
Peptidasa	2	1,19	72,61
Superóxido dismutasa	2	1,19	73,81
AAA	1	0,60	74,40
Activador de señal	1	0,60	75,00
Aldo_ket_red	1	0,60	75,59
Manosidasa	1	0,60	76,19
Amilasa	1	0,60	76,78
Beta-lactamasa	1	0,60	77,38
BTB	1	0,60	77,97
Transportador ATP	1	0,60	78,57
Condensation domain-containing protein	1	0,60	79,16
CVNH	1	0,60	79,76
DAO	1	0,60	80,35
DUF3398	1	0,60	80,95
DUF4484	1	0,60	81,54
DUF4962	1	0,60	82,14
DUF5923	1	0,60	82,73
FERM	1	0,60	83,33
FNIP_N	1	0,60	83,92
GH18	1	0,60	84,52
GH18	1	0,60	85,11
Glyco_hydro_15	1	0,60	85,71
Proteína unión GTP	1	0,60	86,31
Dehalogenasa	1	0,60	86,90
HTH APSES-type	1	0,60	87,50

Hidrofobina	1	0,60	88,09
J	1	0,60	88,69
JmjC	1	0,60	89,28
KH type-2	1	0,60	89,88
MACPF	1	0,60	90,47
Metiltransferasa	1	0,60	91,07
Transporter	1	0,60	91,66
Mitocondrial Ribosomal	1	0,60	92,26
PepX_C	1	0,60	92,85
Sintasa	1	0,60	93,45
Factor de splicing	1	0,60	94,04
Protein OS-9 homolog	1	0,60	94,64
Transcriptasa	1	0,60	95,23
Proteína regulatoria	1	0,60	95,83
Rif1_N	1	0,60	96,42
Polimerasa	1	0,60	97,02
SANT	1	0,60	97,61
SEA	1	0,60	98,21
Dehidrogenasa	1	0,60	98,81
Transcriptional adapter 2	1	0,60	99,40
Permeasa	1	0,60	100,00

2.5 Proteínas de los 8 biofungicidas

Lista no redundante curado prot	Longibrachiat um	Jecorin a	Asperell um	Arundinace um	Atroviri dis	Gamsii	Harzianum 189	Harzianum 194
Carrier	1	1	19	0	7	13	12	31
Glutatión S-transferasa	23	3	35	25	35	35	29	41
Quitinasa	12	11	17	17	16	17	17	21
Predicted protein	0	76	0	0	0	0	0	0
Péptido sintetasa	7	8	0	11	18	0	0	0
Sintasa	8	7	3	12	9	7	8	2
Hidrolasa	3	2	4	7	8	7	9	7
Peptidasa	1	2	5	0	6	2	2	6

Proteína de unión AMP	0	2	6	0	4	3	2	6
Epimerasa	1	1	2	1	1	3	4	5
Catalasa	4	3	5	4	5	4	5	4
Proteína de unión a carbohidratos	1	0	3	0	0	0	0	4
Citocromo P450	5	0	4	8	2	3	3	3
Ligasa	0	0	1	5	1	2	3	3
Kinasa	2	2	2	3	2	4	2	3
Metiltransferasa	2	0	1	3	3	2	2	3
MFS	0	0	3	1	1	1	2	3
Superóxido dismutasa	3	2	2	2	2	3	3	2
Quitosanasa	2	0	3	3	3	2	3	2
Isomerasa	1	0	1	2	0	0	3	2
Arabinofuranosidasa	2	2	2	2	2	2	2	2
Dipeptidasa	2	2	1	1	1	1	2	2
Zn(2)-C6 fungal-type	1	0	2	0	0	0	2	2
Hidrofobina	0	0	2	1	2	2	2	2
HET	0	0	0	0	0	0	2	2
ATPasa	1	1	1	1	0	0	1	2
Proteína de dominio	0	0	0	0	0	0	0	2
Reductasa	2	0	0	4	1	3	6	1
Sintetasa	7	3	2	6	3	3	5	1
Permeasa	1	0	0	1	0	0	2	1
Polimerasa	0	0	0	0	1	1	2	1
Helicasa	1	3	1	1	1	1	1	1
Transporter	4	1	0	2	0	1	1	1
Glucoamilasa	1	1	2	1	2	2	1	1
ANK_REP_REGION	0	0	2	0	1	2	1	1
Lactamasa	0	0	1	0	1	1	1	1
Fosfatasa	0	0	1	0	0	1	1	1
Conserved oligomeric Golgi complex subunit 5	0	0	0	0	0	0	1	1
Metal homeostatis protein bsd2	0	0	0	0	0	0	1	1
PCI	0	0	0	0	0	0	1	1
Proteína de unión NAD(P)	7	0	1	0	2	0	0	1
ADH_zinc_N	1	0	0	0	0	0	0	1
F-box	1	0	0	0	0	0	0	1
Fungal_trans	0	0	0	0	0	1	0	1
Secreted protein	0	0	0	0	0	1	0	1
Coesterasa	0	0	0	0	0	0	0	1
DUF4203	0	0	0	0	0	0	0	1
GFO IDH MocA	0	0	0	0	0	0	0	1
Proteína unión GTP	0	0	0	0	0	0	0	1
MMS19 nucleotide excision repair	0	0	0	0	0	0	0	1
protein	U	U	0	U	0	U	U	1

PNP_UDP_1	0	0	0	0	0	0	0	1
Pyr_redox_2	0	0	0	0	0	0	0	1
TLC	0	0	0	0	0	0	0	1
Transposasa	0	0	0	0	0	0	0	1
KH type-2	0	0	0	0	0	0	0	1
PKS_ER	0	0	0	0	0	0	0	1
SnoaL-like	0	0	0	0	0	0	0	1
Sod_Fe_C	0	0	0	0	0	0	0	1
STAS	0	0	0	0	0	0	0	1
AMP Binding	0	0	0	4	0	2	6	0
URE2	0	0	0	0	0	3	4	0
Dehidratasa	0	0	0	2	0	0	3	0
Sin caracterizar	0	0	0	1	1	0	2	0
NACHT	0	0	0	0	1	0	2	0
Endothiapepsin	0	0	0	1	0	2	2	0
Deacetilasa	0	0	0	1	0	0	2	0
FAD/NAD(P)-binding	0	0	0	0	0	0	2	0
Dehidrogenasa	2	1	1	3	1	2	1	0
Acetiltransferasa	1	1	1	1	0	0	1	0
Pentatricopeptide repeat protein	1	0	1	0	1	1	1	0
Proteasa	1	0	0	2	0	1	1	0
PKS_ER	0	0	1	0	1	1	1	0
Multiple epidermal growth factor-like								
domains 10	0	0	0	1	1	1	1	0
Poligalacturonasa	0	0	0	0	0	2	1	0
40S ribosomal S3	0	0	0	1	0	1	1	0
CVNH	0	0	0	0	0	1	1	0
Fungal specific transcription factor	0	0	0	0	0	1	1	0
Oxidoreductasa	0	0	2	0	0	0	1	0
SnoaL-like	0	0	0	0	0	0	1	0
Clock-controlled gene-4 protein	0	0	0	0	0	0	1	0
DUF2283	0	0	0	0	0	0	1	0
GH26	0	0	0	0	0	0	1	0
GPS	0	0	0	0	0	0	1	0
Heterokaryon incompatibility protein	0	0	0	0	0	0	1	0
Isochorismatasa	0	0	0	0	0	0	1	0
SGNH_hydro	0	0	0	0	0	0	1	0
Spherulation-specific family	0	0	0	0	0	0	1	0
UPF0590	0	0	0	0	0	0	1	0
Zinc knuckle transcription factor	0	0	0	0	0	0	1	0
Liasa	1	1	1	0	1	1	0	0
Beta-glucosidasa	0	1	0	1	0	0	0	0

	0		•	0	•	0	0	0
Arginosuccinase	0	1	0	0	0	0	0	0
Glucopokinaca	0	1	0	0	0	0	0	0
	2	0	0	1	0	0	0	0
	2	0	0	1	0	0	0	0
DUF1769	1	0	0	0	1	0	0	0
Iransaminasa	1	0	0	0	0	0	0	0
Amidasa	1	0	0	0	0	0	0	0
APH	1	0	0	0	0	0	0	0
Proteinasa	1	0	0	0	0	0	0	0
subunit 6	1	0	0	0	0	0	0	0
Cyclin N-terminal	1	0	0	0	0	0	0	0
DUF382	1	0	0	0	0	0	0	0
Esterasa	1	0	0	0	0	0	0	0
HeLo	1	0	0	0	0	0	0	0
Proteina integral de membrana	1	0	0	0	0	0	0	0
ARN Polimerasa subunidad 7	1	0	0	0	0	0	0	0
Metallophos	1	0	0	0	0	0	0	0
Nucleic acid-binding	1	0	0	0	0	0	0	0
Pentatricopeptido	1	0	0	0	0	0	0	0
РН	1	0	0	0	0	0	0	0
RING finger	1	0	0	0	0	0	0	0
GTPasa	1	0	0	0	0	0	0	0
Urb2	1	0	0	0	0	0	0	0
VWFA	1	0	0	0	0	0	0	0
WD40	1	0	0	0	0	0	0	0
Amilasa	0	0	1	0	1	1	0	0
GroES	0	0	1	0	1	1	0	0
Mucin	0	0	1	0	1	1	0	0
Signal recognition particle subunit	0	0	1	0	1	1	0	0
NmrA	0	0	0	0	1	1	0	0
Carboxypoptidaça	0	0	0	0	1	1	0	0
ΕΗΔ	0	0	0	0	1	1	0	0
Manasidasa	0	0	1	2	1	0	0	0
	0	0	1	0	1	0	0	0
	0	0	4	0	1	0	0	0
	0	0	1	0	1	0	0	0
Nuclear membrane fusion protein	0	0	1	0	1	0	0	0
Kar5	0	0	1	0	1	0	0	0
Aldo_ket_red	0	0	0	0	1	0	0	0
Galactosidasa	0	0	0	0	1	0	0	0
Amidinotransferasa	0	0	0	0	1	0	0	0
C2H2	0	0	0	0	1	0	0	0

CNH	0	0	0	0	1	0	0	0
DDE	0	0	0	0	1	0	0	0
RNA polimerasa	0	0	0	0	1	0	0	0
lso_dh	0	0	0	0	1	0	0	0
NTP_transf_9 domain-containing protein	0	0	0	0	1	0	0	0
SSH4	0	0	0	0	1	0	0	0
Putative ERG4/ERG24 ergosterol	0	0	0	0	1	0	0	0
RWD	0	0	0	0	1	0	0	0
Transporte de hierro	0	0	0	0	1	0	0	0
Glutamiltranspeptidasa	0	0	1	0	0	1	0	0
lon trans	0	0	1	0	0	1	0	0
PHB	0	0	0	1	0	1	0	0
Aminopeptidasa	0	0	0	0	0	1	0	0
Transferasa	0	0	0	0	0	1	0	0
BZIP	0	0	0	0	0	1	0	0
Calpain catalytic	0	0	0	0	0	1	0	0
Collagen mid	0	0	0	0	0	1	0	0
DNA repair protein rad5	0	0	0	0	0	1	0	0
FAD binding	0	0	0	0	0	1	0	0
KR	0	0	0	0	0	1	0	0
Meiotic activator RIM4	0	0	0	0	0	1	0	0
Mg2+ transporter zinc transport		_			_			
protein	0	0	0	0	0	1	0	0
PA14	0	0	0	0	0	1	0	0
PMD	0	0	0	0	0	1	0	0
RES	0	0	0	0	0	1	0	0
	0	0	0	0	0	1	0	0
WD_REPEATS_REGION	0	0	0	0	0	1	0	0
	0	0	0	0	0	1	0	0
Degulador transprincional	0	0	0	0	0	1	0	0
	0	0	1	0	0	0	0	0
	0	0	1	0	0	0	0	0
Matavia 1	0	0	1	0	0	0	0	0
NEDD8-activating enzyme E1	0	0	1	0	0	0	0	0
regulatory subunit	0	0	1	0	0	0	0	0
PHD	0	0	1	0	0	0	0	0
Decarboxilasa	0	0	1	0	0	0	0	0
Redoxin	0	0	1	0	0	0	0	0
SPX	0	0	1	0	0	0	0	0
Tuberous sclerosis 1	0	0	1	0	0	0	0	0
Thioredoxin	0	0	0	3	0	0	0	0

Integrasa	0	0	0	2	0	0	0	0
Nadp-binding	0	0	0	2	0	0	0	0
Choriogenin Hminor	0	0	0	1	0	0	0	0
Asparticasa	0	0	0	1	0	0	0	0
ATP Binding	0	0	0	1	0	0	0	0
CRAL-TRIO	0	0	0	1	0	0	0	0
DUF605	0	0	0	1	0	0	0	0
Endopeptidasa	0	0	0	1	0	0	0	0
Hybrid pks-nrps	0	0	0	1	0	0	0	0
Infection structure specific protein	0	0	0	1	0	0	0	0
Metapyrocatechase 2	0	0	0	1	0	0	0	0
Metilesterasa	0	0	0	1	0	0	0	0
MRC1	0	0	0	1	0	0	0	0
Prefoldin subunit 3	0	0	0	1	0	0	0	0
Ribosomal subunit s4	0	0	0	1	0	0	0	0
Stress-response A/B barrel domain- containing protein	0	0	0	1	0	0	0	0
Tpr	0	0	0	1	0	0	0	0
Translation initiation factor eif-2b subunit family	0	0	0	1	0	0	0	0
Transmembrane protein	0	0	0	1	0	0	0	0
Trichothecene efflux pump	0	0	0	1	0	0	0	0

2.6 Identificación de las proteínas de T. Jecorina

UNIPROT ID T Jecorina	Protein names	UNIPROT ID REF	Protein names	Curated proteins
GORS09	Predicted protein	A0A2T4BDR2	Catalase (EC 1.11.1.6)	Catalasa
G0RNZ6	Predicted protein	A0A024HVS7	chitinase (EC 3.2.1.14)	Quitinasa
G0RT42	Predicted protein	A2VEC2	chitinase (EC 3.2.1.14)	Quitinasa
G0R805	Predicted protein	A0A024HW49	Chitinase 18-5	Quitinasa
G0RJ95	Predicted protein	A0A024HW49	Chitinase 18-5	Quitinasa
G0R8V0	Predicted protein	A0A395NXX5	Chitinase chi18-13	Quitinasa

G0RD03	Predicted protein	D6N0X9	Chitinase chi18-13 (EC 3.2.1.14) (Glycoside hydrolase family 18 protein)	Quitinasa
G0RQ95	Predicted protein	A0A0U3IP34	Cytochrome P450 monooxygenase	Citocromo P450 monooxigenasa
G0RDX2	Predicted protein	A0A1T3CP86	Cytochrome P450 monooxygenase	Citocromo P450 monooxigenasa
G0RGH7	Predicted protein	A0A2P4ZJQ6	Cytochrome P450 monooxygenase	Citocromo P450 monooxigenasa
G0RNW4	Predicted protein	A0A8G0LG71	Cytochrome P450 monooxygenase	Citocromo P450 monooxigenasa
G0RI09	Predicted protein	A0A8G0PB17	Cytochrome P450 monooxygenase	Citocromo P450 monooxigenasa
G0RR35	Predicted protein	A0A8G0PMF6	Cytochrome P450 monooxygenase	Citocromo P450 monooxigenasa
G0RWQ1	Predicted protein	G0LW90	Cytochrome P450 monooxygenase	Citocromo P450 monooxigenasa
G0R9H4	Predicted protein	A0A0F9X817	Dipeptidase (EC 3.4.13.19)	Peptidasa
G0R9Z0	Predicted protein	G8GV19	Endochitinase (EC 3.2.1.14)	Quitinasa
G0RE97	Predicted protein	B7SLA8	Endochitinase 42	Quitinasa
G0RHQ4	Predicted protein	B7SLA9	Endochitinase 42	Quitinasa
G0RK20	Predicted protein	B7SLB0	Endochitinase 42	Quitinasa
G0RW43	Predicted protein	B7SLB0	Endochitinase 42	Quitinasa
G0RDV5	Predicted protein	Q50JC2	Endochitinase 42	Quitinasa
G0RGX0	Predicted protein	Q50JC2	Endochitinase 42	Quitinasa
G0RN40	Predicted protein	A0A2K0TSM7	Endopolygalacturonase 1	Poligalacturonasa
G0RAL8	Predicted protein	A0A1T3CBJ7	Glutathione S transferase	Glutatión S-transferasa

GORBSO	Predicted protein	A0A0F9Z864	Glutathione S-transferase	Glutatión S-transferasa
G0REA3	Predicted protein	A0A0F9Z864	Glutathione S-transferase	Glutatión S-transferasa
G0RUN2	Predicted protein	A0A0F9ZND8	Glutathione S-transferase	Glutatión S-transferasa
G0RPZ7	Predicted protein	A0A0G0A326	Glutathione S-transferase	Glutatión S-transferasa
G0RQY5	Predicted protein	A0A0G0A326	Glutathione S-transferase	Glutatión S-transferasa
G0RW01	Predicted protein	A0A0G0A326	Glutathione S-transferase	Glutatión S-transferasa
G0RK73	Predicted protein	A0A1T3CDC0	Glutathione S-transferase	Glutatión S-transferasa
G0RNW2	Predicted protein	A0A1T3CDC0	Glutathione S-transferase	Glutatión S-transferasa
G0RST7	Predicted protein	A0A1T3CDC0	Glutathione S-transferase	Glutatión S-transferasa
G0RVC8	Predicted protein	A0A1T3CDC0	Glutathione S-transferase	Glutatión S-transferasa
G0RT36	Predicted protein	A0A1T3CNZ2	Glutathione S-transferase	Glutatión S-transferasa
G0RC94	Predicted protein	A0A1T3CNZ7	Glutathione S-transferase	Glutatión S-transferasa
G0RXK1	Predicted protein	A0A1T3CY20	Glutathione S-transferase	Glutatión S-transferasa
G0RX13	Predicted protein	A0A1T3CZ90	Glutathione S-transferase	Glutatión S-transferasa
G0R7V5	Predicted protein	A0A2P4ZGF3	Glutathione S-transferase	Glutatión S-transferasa
G0R9T5	Predicted protein	A0A2P4ZGF3	Glutathione S-transferase	Glutatión S-transferasa
G0RPC2	Predicted protein	A0A2P4ZIU2	Glutathione S-transferase	Glutatión S-transferasa
G0RGW8	Predicted protein	A0A2P4ZJV0	Glutathione S-transferase	Glutatión S-transferasa
G0R6V7	Predicted protein	A0A2T4AYS9	Glutathione S-transferase	Glutatión S-transferasa

G0RTT9	Predicted protein	A0A2T4BC54	Glutathione S-transferase	Glutatión S-transferasa	
G0R8K5	Predicted protein	A0A2T4BE86	Glutathione S-transferase	Glutatión S-transferasa	
G0RGR0	Predicted protein	A0A2T4BE86	Glutathione S-transferase	Glutatión S-transferasa	
G0RJW6	Predicted protein	A0A395NHQ8	Glutathione s-transferase	Glutatión S-transferasa	
G0RP35	Predicted protein	A0A1T3CYU8	Glutathione S-transferase Gst3	Glutatión S-transferasa	
G0RDF7	Predicted protein	A0A6V8QJU4	Glutathione S-transferase U2	Glutatión S-transferasa	
G0R7L4	Predicted protein	A0A2P4ZGS5	Glutathione S-transferase-2	Glutatión S-transferasa	
GORFIO	Predicted protein	Q15K91	Hydrophobin 1	Hidrofobina	
G0REH4	Predicted protein	A0A1S6Q8L9	Non-ribosomal peptide synthetase	Péptido sintetasa no ribosomal	
G0RTM6	Predicted protein	A0A1S6Q8L9	Non-ribosomal peptide synthetase	Péptido sintetasa no ribosomal	
G0RKV1	Predicted protein	A0A1S6Q8M0	Non-ribosomal peptide synthetase	Péptido sintetasa no ribosomal	
G0RL16	Predicted protein	A0A1T3CNS3	Non-ribosomal peptide synthetase	Péptido sintetasa no ribosomal	
G0RVM7	Predicted protein	A0A1T3CVS7	Non-ribosomal peptide synthetase	Péptido sintetasa no ribosomal	
G0RSQ3	Predicted protein	A0A2T4BA82	Non-ribosomal peptide synthetase	Péptido sintetasa no ribosomal	
G0RKX8	Predicted protein	A0A395NL37	Non-ribosomal peptide synthetase	Péptido sintetasa no ribosomal	
G0RML5	Predicted protein	A0A8G0PPR6	Non-ribosomal peptide synthetase	Péptido sintetasa no ribosomal	
G0RI89	Predicted protein	G9MFI0	Non-ribosomal peptide synthetase	Péptido sintetasa no ribosomal	
G0RGZ1	Predicted protein	G9MKA1	Non-ribosomal peptide synthetase	Péptido sintetasa no ribosomal	
G0RB26	Predicted protein	G9MXP9	Non-ribosomal peptide synthetase	Péptido sintetasa no ribosomal	

G0RD33	Predicted protein	G9N2Z7	Non-ribosomal peptide synthetase	Péptido sintetasa no ribosomal	
G0RP91	Predicted protein	G9N3D3	Non-ribosomal peptide synthetase	Péptido sintetasa no ribosomal	
G0RP27	Predicted protein	G9NC82	Non-ribosomal peptide synthetase	Péptido sintetasa no ribosomal	
G0RQD0	Predicted protein	G9NFP0	Non-ribosomal peptide synthetase	Péptido sintetasa no ribosomal	
G0RVP4	Predicted protein	G9NTI2	Non-ribosomal peptide synthetase	Péptido sintetasa no ribosomal	
G0RXJ5	Predicted protein	G9P8S7	Non-ribosomal peptide synthetase	Péptido sintetasa no ribosomal	
G0RQP8	Predicted protein	A0A0F9ZYT9	O-methyltransferase	Metiltransferasa	
G0RT29	Predicted protein	A0A0F9ZYT9	O-methyltransferase	Metiltransferasa	
G0RKW7	Predicted protein	A0A1T3CSS2	Polyketide synthase	Sintasa	
GORMI6	Predicted protein	A0A1T3CSS2	Polyketide synthase	Sintasa	
G0R6X8	Predicted protein	A4V8W9	Putative aspartic endopeptidase	Peptidasa	
G0R9K5	Predicted protein	O74567	QI74 protein	Q174	
G0RH40	Predicted protein	D5M9Y1	Superoxide dismutase (EC 1.15.1.1)	Superóxido dismutasa	
G0RG47	Predicted protein	A0A2K0UKK3	Terpene synthase (EC 4.2.3)	Sintasa	

2.7 Proteínas de biocontrol que obtenidas del análisis de velocidades

Grupo OMA	len	UNIPROT	role	rate	Protein names	Cured proteins
OMA851739	260	A0A0F9XE00	biocontrol	0.254345	40S ribosomal protein S3	40S
OMA1054426	206	A0A0F9XI41	biocontrol	0.68635	54S ribosomal protein L20	54S
OMA830139	136	A0A0F9XTH9	biocontrol	0.883888	Anaphase-promoting complex subunit 13	Anaphase-promoting

OMA857110	1193	A0A0F9XBY6	biocontrol	0.94409	ANK_REP_REGION domain-containing protein	ANK_REP_REGION
OMA1067582	499	A0A0F9Y0Z9	biocontrol	0.765271	non-reducing end alpha-L- arabinofuranosidase (EC 3.2.1.55)	Arabinofuranosidasa
OMA689695	1281	A0A0F9XFL1	biocontrol	0.689201	Calcium-transporting ATPase (EC 7.2.2.10)	ATPasa
OMA1054179	332	A0A0F9Y1X3	biocontrol	0.738798	Metal homeostatis protein bsd2	bsd2
OMA197812	598	A0A0F9WV13	biocontrol	0.689188	C2H2-type domain- containing protein	C2H2
OMA765560	544	A0A0F9XDL1	biocontrol	0.813706	Catalase (EC 1.11.1.6)	Catalasa
OMA1045973	517	A0A0F9X4E0	biocontrol	0.899926	Cytochrome P450	Citocromo P450
OMA1011195	497	A0A0F9ZTW7	biocontrol	0.650022	Conserved oligomeric Golgi complex subunit 5	Conserved oligomeric Golgi complex subunit 5
OMA604398	484	A0A0F9X9U2	biocontrol	0.780741	Aldehyde dehydrogenase (NAD+)	Dehidrogenasa
OMA675785	342	A0A0F9ZZJ9	biocontrol	1.004472	Epimerase domain- containing protein	Epimerasa
OMA675648	372	A0A0F9ZK03	biocontrol	0.326973	UDP-glucose 4-epimerase (EC 5.1.3.2)	Epimerasa
OMA756586	805	A0A0F9ZYJ8	biocontrol	0.998433	F-box domain-containing protein	F-box
OMA835393	1210	A0A0F9X1H8	biocontrol	0.881313	FNIP_N domain-containing protein	FNIP_N
OMA1094609	671	A0A0F9XD74	biocontrol	0.713321	Gephyrin	Gephyrin
OMA1070554	264	A0A0F9X6L4	biocontrol	0.63773	Glutathione S-transferase	Glutatión S-transferasa
OMA1111043	261	A0A0F9ZMY8	biocontrol	0.928003	Glutathione S-transferase	Glutatión S-transferasa
OMA1070572	276	A0A0F9ZN85	biocontrol	0.915358	Glutathione S-transferase domain-containing protein	Glutatión S-transferasa
OMA1050931	2212	A0A0F9ZSX9	biocontrol	0.352455	Pre-mRNA splicing helicase	Helicasa
OMA851766	635	A0A0F9WWD8	biocontrol	0.627648	RNA helicase (EC 3.6.4.13)	Helicasa
OMA796485	441	A0A0F9ZKB1	biocontrol	0.74882	ADP-ribosylglycohydrolase	Hidrolasa
OMA1045647	469	A0A0F9XLE6	biocontrol	0.627242	Phenylacetate 2-hydroxylase	Hidroxilasa
OMA1008828	319	A0A0F9WYS8	biocontrol	0.908428	Integral membrane protein	Integral

OMA1085120	937	A0A0G0A2U5	biocontrol	0.928345	Isochorismatase	Isochorismatase
OMA1070546	221	A0A0F9X257	biocontrol	0.902556	Maleylacetoacetate isomerase	Isomerasa
OMA656500	1050	A0A0F9XVD2	biocontrol	0.675556	CAMK/CAMKL/PASK protein kinase	Kinasa
OMA851941	699	A0A0G0A215	biocontrol	0.675686	Acetoacetate-CoA ligase	Ligasa
OMA1002090	249	A0A0F9ZQ85	biocontrol	1.001578	NAD(P)-bd_dom domain- containing protein	NAD(P)-bd_dom
OMA1050255	297	A0A0F9XSS2	biocontrol	0.607735	NMT1 domain-containing protein	NMT1
OMA1068539	721	A0A0F9XFT5	biocontrol	0.654732	Origin recognition complex subunit 1	Origin recognition complex subunit 1
OMA818840	514	A0A0G0AEM1	biocontrol	0.832629	Protein OS-9 homolog	OS-9
OMA860258	461	A0A0F9XKS1	biocontrol	0.903007	Peptidase A1 domain- containing protein	Peptidasa
OMA853542	501	A0A0F9XN02	biocontrol	0.831791	Zinc/iron permease	Permeasa
OMA857874	1389	A0A0F9XZC3	biocontrol	0.585447	Peroxisomal biogenesis factor 6	Peroxisomal biogenesis factor 6
OMA729352	995	A0A0G0AQF7	biocontrol	0.925575	Piwi-domain-containing protein	Piwi
OMA860364	378	A0A0F9ZG17	biocontrol	0.850977	Polygalacturonase	Poligalacturonasa
OMA1060332	406	A0A0F9X8Z9	biocontrol	0.849732	DNA-directed RNA polymerase III complex subunit Rpc37	Polimerasa
OMA1101478	381	A0A0F9XAC4	biocontrol	0.648308	DNA-directed RNA polymerases I and III subunit RPAC1	Polimerasa
OMA1068498	1261	A0A0F9WYM2	biocontrol	0.904208	RNA-dependent RNA polymerase (EC 2.7.7.48)	Polimerasa
OMA851714	674	A0A0F9WVM3	biocontrol	0.439704	Pre-mRNA-splicing factor clf-1	Pre-mRNA-splicing
OMA991827	341	A0A0F9ZE32	biocontrol	0.703611	chitinase (EC 3.2.1.14)	Quitinasa
OMA755693	589	A0A0F9XL27	biocontrol	0.589462	Delta24(24(1))-sterol reductase	Reductasa
OMA638606	1506	A0A0F9ZY08	biocontrol	0.995828	Rif1_N domain-containing protein	Rif1_N
OMA1054103	227	A0A0F9X9J8	biocontrol	0.799439	RWD domain-containing protein	RWD

OMA785584	644	A0A0F9ZG11	biocontrol	0.894365	Signal recognition particle subunit SRP72	Signal recognition particle subunit SRP72
OMA1042720	535	A0A0F9XM80	biocontrol	0.473009	Dihydropteroate synthase	Sintasa
OMA851679	719	A0A0F9ZWB6	biocontrol	0.619848	Acetyl-coenzyme A synthetase (EC 6.2.1.1)	Sintetasa
OMA852253	575	A0A0F9XZU8	biocontrol	0.515183	Acyl-CoA synthetase Yngl	Sintetasa
OMA854151	1284	A0A0F9XSG0	biocontrol	0.679917	Enterobactin synthetase component F	Sintetasa
OMA1110626	205	A0A0F9Z9Q8	biocontrol	0.378634	Superoxide dismutase (EC 1.15.1.1)	Superóxido dismutasa
OMA1110627	212	A0A0F9ZP58	biocontrol	0.1516	Superoxide dismutase (EC 1.15.1.1)	Superóxido dismutasa
OMA1063588	674	A0A0G0A4N8	biocontrol	0.905603	TGc domain-containing protein	TGc
OMA726037	699	A0A0G0AE97	biocontrol	0.062309	glutaminefructose-6- phosphate transaminase (isomerizing) (EC 2.6.1.16) (D-fructose-6-phosphate amidotransferase) (Hexosephosphate aminotransferase)	Transaminasa
OMA718921	484	A0A0F9XQQ7	biocontrol	0.816628	Glycosyltransferase family 31 protein	Transferasa
OMA610863	690	A0A0F9XM99	biocontrol	0.779708	polynucleotide adenylyltransferase (EC 2.7.7.19)	Transferasa
OMA1110196	1049	A0A0F9XQA8	biocontrol	0.582853	RNA cytidine acetyltransferase (EC 2.3.1) (18S rRNA cytosine acetyltransferase)	Transferasa
OMA1077516	342	A0A0G0AGL8	biocontrol	0.766925	rRNA adenine N(6)- methyltransferase (EC 2.1.1)	Transferasa
OMA764066	333	A0A0F9XHA9	biocontrol	0.790746	UPF0590 protein	UPF0590
OMA787125	363	A0A0F9ZS67	biocontrol	0.827328	WLM domain-containing protein	WLM
OMA1052563	855	A0A0F9WYG6	biocontrol	0.81749	Zn(2)-C6 fungal-type domain-containing protein	Zn(2)-C6

2.8 Análisis estadístico

Patógenos biofungicidas

Prueba de Wilcoxon para muestras independientes

Clasific	Variable	Grupo 1	Grupo 2	n(1)	n(2)	Media(1)	Media(2)	DE(1)	DE (2)	W	p(2	colas)
role	rate	biocontrol No	Biocontrol	62	3101	0,72	0,67	0,21	0,22	110861,00		0,0727

Biocontroladores

Prueba de Wilcoxon para muestras independientes

Clasific Variable	Grupo 1	Grupo 2	n(1)	n(2)	Media(1)	Media(2)	DE(1)	DE(2)	W	p(2 colas)
rolel rates	Biocontrol No	biocontrol	78	3643	0,90	0,89	0,12	0,15	158837,50	0,1451

Resultados test pearson

Correlación de Pearson: Coeficientes\probabilidades rate CAI rate 1,00 0,00 CAI -0,20 1,00

Wilcoxon CAI

Prueba de Wilcoxon para muestras independientes

Clasific	Variable	Grupo 1	Grupo 2	n(1)	n(2)	Media(1)	Media(2)	DE(1)	DE (2)	W	p(2	colas)
role	CAI	Biocontrol	No biocontrol	31	1573	0,44	0,43	0,05	0,05	27544,00		0,2964

Wilxocon boostraping

Prueba de Wilcoxon para muestras independientes

Clasific	Variable	Grupo 1	Grupo 2	n(1)	n(2)	Media(1)	Media(2)	DE(1)	DE(2)	W	p(2 colas)
role CA	I (bootstraping)	Biocontrol No	biocontrol	31	500	0,44	0,22	0,05	0,04	15996,00	<0,0001

Capítulo 3

3.1 Proteínas Selección positiva

Método ML	Proteína	OMA ID	Código para UNIPROT	Protein names	Curado
branch	TRIHA10489	OMA807109	A0A0F9ZWB6	Acetyl-coenzyme A synthetase (EC 6.2.1.1)	Sintetasa
branch	TRIHA00408	OMA585571	A0A0F9XS15	Coatomer subunit beta (Beta-coat protein)	Coatomer
branch	TRIHA06513	OMA756703	A0A0E9ZMB9	H(+)-transporting two-sector ATPase (EC 7 1 2 2)	ATPasa
branch	TRIHA05296	OMA1033100	A0A0E9ZOP3	Queuine tRNA- ribosyltransferase catalytic subunit 1 (EC 2.4.2.64) (Guanine insertion enzyme) (tRNA- guanine transolycosylase)	Transferasa
branch	TRIHA06702	OMA807827	A0A0F9X9H8	RRM domain-	RRM
branch	TRIHA09592	OMA808073	A0A0F9XC86	RRM domain- containing protein	RRM
branch	TRIHA10268	OMA947721	A0A0F9XA85	S- (hydroxymethyl)glut athione dehydrogenase (EC 1.1.1.284)	Dehidrogenasa
branch	TRIHA02794	OMA1038397	A0A0F9ZYP3	Serine hydroxymethyltrans ferase (EC 2.1.2.1)	Transferasa
branch	TRIHA11254	OMA958482	A0A0F9WU04	Small nuclear ribonucleoprotein G (snRNP-G)	Small nuclear ribonucleoprotein G (snRNP-G)

branch TRIHA01854		OM4992105	4040G041B2	Spliceosomal	Spliceosomal	
ľ	branch		01017332103	AUAUGUATBZ		
	branch	TRIHA05834	OMA1041576	ΑθΑθΕ9ΧΡΟ3	SuccinateCoA ligase [ADP- forming] subunit alpha, mitochondrial (EC 6.2.1.5) (Succinyl- CoA synthetase subunit alpha) (SCS-alpha)	Ligasa
ľ	branon	11(11)/00004	011/10/10/0			Liguou
	branch	TRIHA09078	OMA750379	A0A0F9X0H9	Transcription factor domain-containing protein	Transcription factor
	branch	TRIHA01234	OMA807188	A0A0F9XPS8	Ubiquitin- conjugating enzyme E2-18 kDa	Ubiquitin- conjugating
	n-sites	TRIHA05190	OMA991026	A0A0F9ZQX2	1,3-beta- glucanosyltransfera se (EC 2.4.1)	Glucanosiltransfera sa
	n-sites	TRIHA04280	OMA718466	A0A0F9XGC5	1- phosphatidylinositol -3-phosphate 5- kinase (EC 2.7.1.150)	kinasa
	n-sites	TRIHA01296	OMA1037973	A0A0G0A2T0	26S proteasome regulatory subunit N10	26S proteasome regulatory subunit N10
	n-sites	TRIHA03293	OMA953228	A0A0F9ZX57	2-isopropylmalate synthase	Sintasa
ĺ	n-sites	TRIHA07830	OMA972566	A0A0G0A4G6	2-methylcitrate dehydratase	Dehidratasa
	n-sites	TRIHA11477	OMA1009488	A0A0F9WV69	30S ribosomal protein S5	Proteína ribosomal
ľ	n-sites	TRIHA02770	OMA1003327	A0A0F9XKW9	37S ribosomal protein Rsm22	Proteína ribosomal

n-sites	TRIHA01900	OMA1039650	A0A0G0A175	3-isopropylmalate dehydratase (EC 4.2.1.33) (Alpha- IPM isomerase) (Isopropylmalate isomerase)	Dehidratasa
				,	
n-sites	TRIHA00389	OMA965424	A0A0G0A5N7	5_nucleotid_C domain-containing protein	5_nucleotid_C
n-sites	TRIHA09448	OMA807107	A0A0F9WZB7	ABC transporter ATP-binding protein ARB1	ABC transporter
n-sites	TRIHA03044	OMA807451	A0A0F9XK99	ABC transporter domain-containing protein	ABC transporter
n-sites	TRIHA07144	OMA797758	A0A0F9X6E4	AlcB domain- containing protein	AlcB
n-sites	TRIHA03777	OMA810670	A0A0F9ZVH9	Allergen Asp F7	Allergen Asp F7
n-sites	TRIHA09994	OMA782429	A0A0F9WXL4	Amino acid permease	Permeasa
n-sites	TRIHA00124	OMA585574	A0A0F9XTA8	AP complex subunit beta	AP complex subunit beta
n-sites	TRIHA03245	OMA643338	A0A0F9X162	Beta- hexosaminidase (EC 3.2.1.52)	Hexoaminidasa
				Beta-lactamase- related domain-	
n-sites	TRIHA04089	OMA737886	A0A0F9ZUD3	containing protein	Lactamasa
n-sites	TRIHA06698	OMA811954	A0A0F9X9K6	BHLH domain- containing protein	BHLH
n-sites	TRIHA10855	OMA1035908	A0A0F9W/\/84	Breast carcinoma amplified sequence	Breast carcinoma amplified sequence 2
n-sites	TRIHA01657	OMA739550	A0A0F9XNZ6	C2H2-type domain- containing protein	C2H2

n-sites	TRIHA09979	OMA971773	A0A0F9WXL8	CAP10 domain- containing protein	CAP10
				Cell differentiation	Cell differentiation
n-sites	TRIHA00748	OMA741647	A0A0G0A4D6	family protein	family protein
				Coll division control	Coll division control
n-sites	TRIHA11250	OMA807168	A0A0F9WVZ9	protein 48	protein 48
				Cenn-O	Cenn-O
				kinetochore	kinetochore
n sites		014070004		centromere	centromere
n-siles		OMA973961	AUAUF921VV2	component	component
n-sites	TRIHA04335	OMA1030530	A0A0F9XEZ9	Checkpoint protein	Checkpoint protein
				Chitin synthase (EC	
n-sites	TRIHA05958	OMA792008	A0A0G0AA74	2.4.1.16)	Sintasa
n eitee		0144072547	4040004077	CMGC protein	CMCC
n-sites	TRIHAU1464	OMA972517	AUAUGUA277	Kinase	CMGC
				CMP/dCMP-type	
				deaminase domain-	
n-sites	TRIHA03788	OMA987884	A0A0F9XVJ4	containing protein	Deaminasa
n-sites	TRIHA09818	OMA808245	A0A0F9ZY80	Cytokinesis protein sepA	Cytokinesis protein sepA
				Dihydropteroate	·
n-sites	TRIHA01994	OMA975166	A0A0F9XM80	synthase	Sintasa
				Dipeptidase (EC	
n-sites	TRIHA07064	OMA754762	A0A0F9XK66	3.4.13.19)	Dipeptidasa
				domain-containing	
n-sites	TRIHA04693	OMA807473	A0A0F9XT09	protein	DMAP1
				DNA polymerase	
				epsilon catalytic subunit (EC	
n-sites	TRIHA06605	OMA667356	A0A0F9ZM22	2.7.7.7)	Polimerasa
n-sites		OM4808260		DNA repair protein	DNA repair protein
11-3110-3			AUAUI JAGAT		
				DNA-directed RNA polymerase III	
	TOULASSO	014000000		complex subunit	
n-sites	I RIHA06218	OMA990785	AUAUF9X8Z9	Rpc37	Polimerasa

				DNA directed PNA	
				polymerase III	
				(RNA polymerase	–
n-sites	TRIHA04247	OMA1011693	A0A0F9XF50	III subunit C6)	Polimerasa
				DnaJ homologue	Dralhamalanua
				member 28	subfamily C
n-sites	TRIHA07382	OMA961233	A0A0G0A5P8	conserved domain- containing protein	member 28 conserved
n citor		OM44040200	4040004407	Florentian factor 2	Factor de
n-siles	TRIHA00653	OMA 1042329	AUAUGUA4P7	Elongation factor 2	elongación
				Extragenic suppressor of	Extragenic suppressor of
n-sites	TRIHA01702	OMA582186	A0A0E9Y212	kinetochore protein	kinetochore protein
		0.002.00			
n-sites	TRIHA05408	OMA639226	A0A0F9XQI4	Fmp27 domain- containing protein	Fmp27
n-sites	TRIHA00385	OMA970404	A0A0F9Y5Y0	Formamidase	Formamidasa
				Formate dehydrogenase	
				(FDH) (EC	
n-sites	TRIHA04732	OMA1039931		dependent formate	Dehidrogenasa
11 01100	1101110			denyarogenacey	Domarogonada
				General transcription and	
				DNA repair factor IIH subunit TFB4	
				(TFIIH subunit TFB4) (RNA	
				polymerase II transcription factor	
n-sites	TRIHA08659	OMA1027260	A0A0F9X3L0	B subunit 4)	Polimerasa
				Glycogen [starch] synthase (EC	
n-sites	TRIHA01393	OMA968651	A0A0F9Y309	2.4.1.11)	Sintasa

n-sites		OMA951876	ΔΩΔΩΕ97ΗS8	histone acetyltransferase (EC 2 3 1 48)	Transferasa
n-sites	TRIHA08202	OMA999516	A0A0G0A363	Histone transcription regulator 3 homolog	Histone transcription regulator 3
n-sites	TRIHA09366	OMA698104	A0A0F9XD02	HPP family protein	HPP
n-sites	TRIHA03340	OMA1003873	A0A0G0A106	lon transport domain-containing protein	lon transport
n-sites	TRIHA01803	OMA670496	A0A0F9XN46	Isochorismatase- like domain- containing protein	Isocorismatasa
n-sites	TRIHA04370	OMA814098	A0A0F9XEN6	Kinesin family member 1/13/14	Kinesin family member 1/13/14
n-sites	TRIHA07342	OMA1013801	A0A0F9XJD5	L-asparaginase	Asparaginasa
n-sites	TRIHA07322	OMA584516	A0A0F9X7S7	Lethal giant larvae (Lgl)-like C-terminal domain-containing protein	Lethal giant larvae (Lgl)-like C-terminal
n-sites	TRIHA04324	OMA977455	A0A0F9XGC0	magnesium chelatase (EC 6.6.1.1)	Quelatasa
n-sites	TRIHA10534	OMA234913	A0A0F9WW29	Major facilitator superfamily (MFS) profile domain- containing protein	Major facilitator superfamily (MFS) profile
n-sites	TRIHA06116	OMA814082	A0A0F9X996	Major facilitator superfamily (MFS) profile domain- containing protein	Major facilitator superfamily (MFS) profile
n-sites	TRIHA02334	OMA829973	A0A0G0A045	Major facilitator superfamily (MFS) profile domain- containing protein	Major facilitator superfamily (MFS) profile
----------	------------	----------------	------------	---	--
n-sites	TRIHA08399	OMA996022	A0A0F9X2W3	Minichromosome maintenance protein 10	Minichromosome maintenance protein 10
n-sites	TRIHA01371	OMA1004118	A0A0F9XP92	Mitochondrial import receptor subunit tom-40	Mitochondrial import receptor subunit tom-40
n-sites	TRIHA09577	OMA583846	A0A0F9XC90	Mitochondrial phosphate carrier protein	Mitochondrial phosphate carrier protein
n-sites	TRIHA02835	OMA953727	A0A0F9ZYM1	Murein transglycosylase	Transglicosilasa
n-sites	TRIHA01973	OMA666547	A0A0F9Y1E8	N-acetyltransferase domain-containing protein	Acetiltransferasa
n-sites	TRIHA00717	OMA934045	A0A0F9XRY2	NACHT and WD40 domain-containing protein	NACHT and WD40
				F	
n-sites	TRIHA00570	OMA885141	A0A0G0A5B5	NACHT domain- containing protein	NACHT
n-sites	TRIHA07759	OMA807677	Α0Α0Ε9ΧΗΥ2	Nitrate transporter	Nitrate transporter
n-sites	TRIHA01374	OMA770431	A0A0G0APP3	Nucleotide exchange factor Fes1 domain- containing protein	Nucleotide exchange factor Fes1
n-sites	TRIHA09356	OMA984552	A0A0F9ZDW1	Oligosaccharide translocation protein RFT1	Oligosaccharide translocation protein RFT1
n-sites		OM&1000739		Pantothenate	Kinasa
11-51165	1111409014	01017 10007 30	AUAULANIKI	NIIIdSe	NindSd

				Peptidase A1	
n-sites	TRIHA10162	OMA738652	A0A0F9XAH1	protein	Peptidasa
n-sites	TRIHA01099	OMA1010435	A0A0F9XQ91	Peroxin domain- containing protein	Peroxin
n-sites	TRIHA02528	OMA812894	A0A0F9XZC3	Peroxisomal biogenesis factor 6	Peroxisomal biogenesis factor 6
n-sites	TRIHA07350	OMA702044	A0A0F9X7R1	PH domain- containing protein	РН
n-sites	TRIHA08165	OMA695540	A0A0F9ZHH4	Phospholipid- transporting ATPase (EC 7.6.2.1)	ATPasa
n-sites	TRIHA02446	OMA977704	A0A0F9XLX3	precorrin-2 dehydrogenase (EC 1.3.1.76)	Dehidrogenasa
n-sites	TRIHA00195	OMA1032999	A0A0F9Y6G0	Pre-mRNA-splicing factor SYF2	Pre-mRNA-splicing factor
n-sites	TRIHA08952	OMA807362	A0A0F9XE27	Protein transport protein SEC24 (Protein transport protein sec24)	Protein transport protein SEC24
n-sites	TRIHA10912	OMA992705	A0A0F9X857	Ribosome biogenesis protein SLX9	Ribosome biogenesis protein SLX9
n-sites	TRIHA10060	OMA802410	A0A0F9XAV1	RING-type domain- containing protein	RING-type
n-sites	TRIHA06662	OMA808880	A0A0F9XLJ2	SANT domain- containing protein	SANT
n-sites	TRIHA08003	OMA1018011	A0A0F9X3V8	Sedlin	Sedlin
n-sites	TRIHA10032	OMA603149	A0A0F9WZJ9	Serine/threonine- protein phosphatase 4 regulatory subunit 3-like central domain-containing protein	Fosfatasa

n-sites	TRIHA01907	OMA813104	A0A0G0ANF1	SET domain- containing protein	SET
n-sites	TRIHA02563	OMA1000825	A0A0F9XZM0	Sodium symporter family protein	Sodium symporter family protein
				Spo7 kinotochoro	
				protein domain-	
n-sites	TRIHA05442	OMA770360	A0A0F9XCU9	containing protein	Spc7
				SRP54 domain-	
n-sites	TRIHA08677	OMA976002	A0A0F9XEX0	containing protein	SRP54
n-sites	TRIHA06211	OMA992121	A0A0G0A9I1	protein kinase	STE/STE
				SURP motif domain-containing	
n-sites	TRIHA09080	OMA1022317	A0A0F9XDV9	protein	SURP motif
				TATA-binding	
				protein interacting (TIP20) domain-	TATA-binding
n-sites	TRIHA02641	OMA1037097	A0A0F9XL65	containing protein	(TIP20)
n-sites		OM4954594		Threonine aldolase	Aldolasa
11-5112-5		01017334334		Transcription factor	Aluulasa
n-sites	TRIHA10677	OMA809047	A0A0F9ZVR5	BYE1	Transcription factor
n-sites		OM4598420	4040E97SI5	Transketolase (EC	Transketolasa
11 31103		0101/030420	A0A01 32013	Translocation	Translocation
n-sites	TRIHA01915	OMA1040617	A0A0F9Y1G9	protein SEC63	protein SEC63
n-sites	TRIHA09892	OMA1005302	A0A0F9W/777	Uncharacterized	Sin caracterizar
11 51100	1111111100002			Uncharacterized	
n-sites	TRIHA09144	OMA724209	A0A0F9X0C6	protein	Sin caracterizar
n-sites	TRIHA06152	OMA999131	A0A0F9XB55	Uncharacterized	Sin caracterizar
11 51100	111112100102			Uncharacterized	
n-sites	TRIHA04212	OMA703687	A0A0F9XGP3	protein	Sin caracterizar
n-sites	TRIHA01032	OMA970684	ΔΟΔΟΕΘΧΝ14	Uncharacterized	Sin caracterizar
11 01100	11.11.01002	01111010004		Uncharacterized	
n-sites	TRIHA01755	OMA231706	A0A0F9XN69	protein	Sin caracterizar

n-sites	TRIHA01091	OMA788933	A0A0F9Y3W7	Uncharacterized protein	Sin caracterizar
n-sites	TRIHA00172	OMA208300	A0A0F9Y6Y6	Uncharacterized protein	Sin caracterizar
n-sites	TRIHA10005	OMA1011498	A0A0F9ZBJ1	Uncharacterized protein	Sin caracterizar
n-sites	TRIHA05489	OMA803761	A0A0F9ZQ74	Uncharacterized protein	Sin caracterizar
n-sites	TRIHA02557	OMA811063	A0A0F9ZZD7	Uncharacterized protein	Sin caracterizar
n-sites	TRIHA00527	OMA811483	A0A0G0AS54	Uncharacterized protein	Sin caracterizar
n-sites	TRIHA06616	OMA699720	A0A0F9XLS4	Vacuolar assembly protein	Vacuolar protein
n-sites	TRIHA08820	OMA967222	A0A0G0A198	Vacuolar membrane- associated protein IML1 (Vacuolar membrane- associated protein iml1)	Vacuolar protein
n-sites	TRIHA08367	OMA1033084	A0A0F9XG46	Vacuolar protein sorting-associated protein 35	Vacuolar protein
n-sites	TRIHA00269	OMA982742	A0A0F9Y692	V-type proton ATPase subunit a	V-type proton ATPase subunit a
n-sites	TRIHA03832	OMA1024382	A0A0G0AGC7	WD repeat protein mio zinc-ribbon like domain-containing protein	WD repeat protein mio zinc-ribbon like
n-sites	TRIHA07004	OMA952643	A0A0F9X8L1	WD_REPEATS_RE GION domain- containing protein	WD_REPEATS_RE GION
n-sites	TRIHA10841	OMA812410	A0A0F9ZVE1	WKF domain- containing protein	WKF
n-sites	TRIHA07034	OMA936384	A0A0F9X8H7	WSC domain- containing protein	WSC

n-sites	TRIHA09879	OMA940515	A0A0F9ZC45	xanthine dehydrogenase (EC 1.17.1.4)	Dehidrogenasa
n-sites	TRIHA06781	OMA736873	4040E9X7E3	Zn(2)-C6 fungal- type domain-	Zn(2)-C6
					211(2) 00
				Zn(2)-C6 fungal- type domain-	
n-sites	TRIHA04242	OMA775751	A0A0F9XF47	containing protein	Zn(2)-C6
				Zp(2) C6 fungel	
				type domain-	
n-sites	TRIHA03962	OMA743956	A0A0G0AG16	containing protein	Zn(2)-C6

3.2 Scripts y programas utilizados

Programa ad hoc para extraer secuencias codificantes de archivo eukaryotes.cdna.fa (~20 gigas) descargado de OMA

#include "stdio.h"
#include "string.h"
#include "stdlib.h"
#include "ctype.h"

#define MAXSTR 1000

FILE *infile,*infile1,*outfile;

main(int argc,char *argv[])

```
{
```

int i,j,numoma; long int posit; char line[MAXSTR],str[MAXSTR],outname[100],name[100],seq[500000],oma[90000][20]; char *p,chain;

```
infile=fopen(argv[1], "r");
```

```
infile1=fopen(argv[2], "r");
          i=0;
          while (fgets(line, MAXSTR, infile1) != NULL ) {
            sscanf(line,"%s\n",oma[i]);
            i++;
         }
printf("%d\n",i);
          numoma=i;
          while (fgets(line, MAXSTR, infile) != NULL ) {
           if(strstr(line,"TRIHA") || strstr(line,"FUSC1") || strstr(line,"FUSO4") || strstr(line,"STAC4") ){
               for(j=0;j<numoma;j++)</pre>
                if(strstr(line,oma[j])){
                    sscanf(line,"%*c %s",name);
                    while (fgets(line, MAXSTR, infile) != NULL && line[0]!='>' && isprint(line[0])) {
                             sscanf(line,"%s\n",str);
                             strcat(seq,str);
                    }
                    fputs(line,infile);
                   printf(">%s\n%s\n",name,seq);
                    name[0]='\0';
                    str[0]='\0';
                    seq[0]='\0';
               }
           }
         }
}
Script para alinear secuencias con tcoffee
#!/bin/bash
#$ -S /bin/sh
for i in `cat segmentoaa`
 do
 ./t_coffee -in=$i -mode=regular -output=phylip fasta_aln -run_name=$i -quiet=stdout
done
Programa para escribir las secuencias por separado (splitfastafiles.c)
#include "stdio.h"
#include "string.h"
#include "ctype.h"
#include "stdlib.h"
#define MAXSTR 1000
```

#define MAXSTR 1000 #define MAXNAME 100 #define MAXPROTLEN 80000 FILE *infile,*outfile;

main(int argc,char *argv[])

{

```
int i,j,num;
char line[MAXSTR];
char name[MAXNAME],seq[100000],str[100000],name1[MAXNAME];
int posit,p;
char outname[MAXNAME];
```

```
infile=fopen(argv[1],"r"); /*file con secuencias en formato fasta*/
```

```
i=0:
while (fgets(line, MAXSTR, infile) != NULL ) {
 if(line[0]=='>'){
           sscanf(line,">%s\n",name);
           while (posit=ftell(infile),fgets(line, MAXSTR, infile) != NULL) {
             if(line[0]!='>' && isprint(line[0])){
                    sscanf(line,"%s\n",str);
                    strcat(seq,str);
             }
             else break;
           }
           fseek(infile,posit,SEEK_SET);
 }
           if(strlen(seq) > MAXPROTLEN) {
                    printf("seqs > MAXPROTLEN\n");
           }
 sprintf(outname,"%s.fasta",name);
 strncpy(name1,name,5);
 outfile=fopen(outname,"w");
 fprintf(outfile,">%s\n%s\n",name1,seq);
 fclose(outfile);
 outname[0]='\0';
 seq[0]='\0';
 str[0]='\0';
 name[0]='\0';
}
```

```
}
```

Script para armar alineamientos de ADN (secuencias codificantes)

#!/bin/bash #\$ -S /bin/sh

```
for i in `cat listaarmarbelen`
do
```

rsync ../Belen/OMA/marker_genes3/*.fasta_aln . grep ">" \$i.fasta_aln > \$i.lista cut -c 2-11 \$i.lista > infile for j in `cat infile` do cat \$j.fasta >> \$i.fasta_dna done rm infile *.fasta_aln done

Usando las secuencias de ADN y los alineamientos de proteínas, convertimos los alineamientos de proteínas en alineamientos de ADN usando el programa pal2nal.v1.4 usando el siguiente script

#!/bin/bash #\$ -S /bin/sh

for i in `cat listasetoh` do rsync ../SETOH/\$i.fasta_aln . rsync ../SETOH/\$i.fasta_dna . ./phy2fasta.exe \$i.fasta_aln.phylip > \$i.fasta perl pal2nal.pl \$i.fasta_aln \$i.fasta_dna -output fasta -codontable 1 > infile mv infile \$i.prottodna rm *.fasta_dna *.phylip *.fasta ./leerali1.exe infile > \$i-codones.prottodna done

Con estos alineamientos se utilizaba el programa Codeml para estimar la presencia de selección positiva, utilizando el siguiente input para el programa

```
seqfile = infile * sequence data filename
   treefile = reftree3
                      * tree structure file name
   outfile = outs
                       * main result file name
    noisy = 0 * 0, 1, 2, 3, 9: how much rubbish on the screen
   verbose = 0 * 0: concise; 1: detailed, 2: too much
   runmode = 0 * 0: user tree; 1: semi-automatic; 2: automatic
            * 3: StepwiseAddition; (4,5):PerturbationNNI; -2: pairwise
  cleandata = 0 * remove sites with ambiguity data (1:yes, 0:no)?
   seqtype = 1 * 1:codons; 2:AAs; 3:codons-->AAs
  CodonFreq = 2 * 0:1/61 each, 1:F1X4, 2:F3X4, 3:codon table
     ndata = 1
    clock = 0 * 0:no clock, 1:clock; 2:local clock; 3:CombinedAnalysis
    aaDist = 0 * 0:equal, +:geometric; -:linear, 1-6:G1974,Miyata,c,p,v,a
 aaRatefile = dat/jones.dat * only used for aa seqs with model=empirical(_F)
           * dayhoff.dat, jones.dat, wag.dat, mtmam.dat, or your own
    model = 0
            * models for codons:
              * 0:one, 1:b, 2:2 or more dN/dS ratios for branches
           * models for AAs or codon-translated AAs:
              * 0:poisson, 1:proportional, 2:Empirical, 3:Empirical+F
              * 6:FromCodon, 7:AAClasses, 8:REVaa_0, 9:REVaa(nr=189)
```

NSsites = 0 1 2 3 7 8 * 0:one w;1:neutral;2:selection; 3:discrete;4:freqs;

* 5:gamma;6:2gamma;7:beta;8:beta&w;9:betaγ

- * 10:beta&gamma+1; 11:beta&normal>1; 12:0&2normal>1;
- * 13:3normal>0

icode = 0 * 0:universal code; 1:mammalian mt; 2-10:see below Mgene = 0

> * codon: 0:rates, 1:separate; 2:diff pi, 3:diff kapa, 4:all diff * AA: 0:rates, 1:separate

fix_kappa = 0 * 1: kappa fixed, 0: kappa to be estimated kappa = 2 * initial or fixed kappa

fix_omega = 0 * 1: omega or omega_1 fixed, 0: estimate omega = .4 * initial or fixed omega, for codons or codon-based AAs

fix_alpha = 1 * 0: estimate gamma shape parameter; 1: fix it at alpha

alpha = 0. * initial or fixed alpha, 0:infinity (constant rate) Malpha = 0 * different alphas for genes ncatG = 8 * # of categories in dG of NSsites models

```
getSE = 0 * 0: don't want them, 1: want S.E.s of estimates
RateAncestor = 1 * (0,1,2): rates (alpha>0) or ancestral states (1 or 2)
```

Small_Diff = .5e-6

- fix_blength = 1 * 0: ignore, -1: random, 1: initial, 2: fixed, 3: proportional method = 0 * Optimization method 0: simultaneous; 1: one branch a time
- * Genetic codes: 0:universal, 1:mammalian mt., 2:yeast mt., 3:mold mt.,
- * 4: invertebrate mt., 5: ciliate nuclear, 6: echinoderm mt.,
- * 7: euplotid mt., 8: alternative yeast nu. 9: ascidian mt.,
- * 10: blepharisma nu.
- * These codes correspond to transl_table 1 to 11 of GENEBANK.

La información se derivaba utilizando el siguiente script

#!/bin/bash #\$ -S /bin/sh

for i in `cat listaDNA3` do rsync ../pal2nal.v14/\$i.prottodna . mv \$i.prottodna infile ./codemI mv outs \$i-nsites.outs

grep -n "w (dN/dS) for branches:" \$i.outs >> resultadospaml

done