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One sentence summary: Aquatic microorganisms moving at the same rhythm.

Editor: Martin W. Hahn

ABSTRACT

The aim of this work was to assess the temporal patterns in the community composition of phytoplankton (PCC) and
bacterioplankton (BCC) in two interconnected and hypertrophic Pampean shallow lakes in Argentina. Factors shaping their
community dynamics and community temporal covariations were also analysed. We performed 4 years of seasonal
samplings (2012–2016) and communities were studied by the Utermöhl approach (PCC) and Illumina MiSeq sequencing
(BCC). We found marked seasonal variations in both communities and inter-annual variations with decreasing microbial
community similarities during the study. We also observed covariation in community-level dynamics among PCC and BCC
within and between shallow lakes. The within-lake covariations remained positive and significant, while controlling for the
effects of intrinsic (environmental) and extrinsic (temporal and meteorological) factors, suggesting a community coupling
mediated by intrinsic biotic interactions. Algal-bacterial associations between different taxa of phytoplankton and
bacterioplankton within each lake were also found. PCC was mainly explained by pure regional extrinsic (17–21%) and
intrinsic environmental (8–9%) factors, while BCC was explained by environmental (8–10%) and biotic interactions with
phytoplankton (7–8%). Our results reveal that the influence of extrinsic regional factors can be channeled to
bacterioplankton through both environmental (i.e. water temperature) and phytoplankton effects.
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INTRODUCTION

Microorganisms support the existence of all higher trophic life
forms (Cavicchioli et al. 2019). The ecological and biotechnologi-
cal services that they provide to the planet and humans high-
light the need to preserve their diversity (Vitorino and Bessa
2018) and comprehend their ecological patterns, processes and
mechanisms (Marco 2019). In particular, phytoplankton and bac-
terioplankton are major components of the aquatic microbial
food web, which interact continuously and play essential roles
in aquatic ecosystem functioning (Jones and Reynolds 1984;
Fuhrman 2009; Sarmento and Gasol 2012). To date, comprehen-
sive studies simultaneously evaluating the temporal patterns
of phytoplankton and bacterioplankton have been performed
mainly in oligo- and mesotrophic lakes, but are less frequent in
eutrophic and hypertrophic systems (Su et al. 2017a and citations
therein).

Temporal patterns and community dynamics are influenced
by drivers acting from within and from outside an ecosystem.
These forces can be separated into intrinsic or system-specific
drivers (such as biotic interactions, nutrient availability, physi-
cal and chemical variables) and extrinsic (such as climate, tem-
perature, solar irradiation and dry-wet periods) factors (Lieb-
hold, Koenig and Bjørnstad 2004). Extrinsic drivers operating
at a regional scale can impose synchrony and covariations on
the dynamics of different ecosystem parameters and biologi-
cal communities, while intrinsic drivers often lead to distinc-
tive behaviour (e.g. Liebhold, Koenig and Bjørnstad 2004; Kent
et al. 2007). However, how phytoplankton and bacterioplankton
communities respond synchronously to changing intrinsic and
extrinsic conditions remains poorly explored (Kent et al. 2007; Su
et al. 2017a).

Temporal patterns of microbial communities show seasonal
trends and synchrony between communities in different aquatic
ecosystems, such as rivers, reservoirs and lakes (e.g. Crump and
Hobbie 2005; Liu et al. 2015; Bock et al. 2018). Reports based on
high frequency multiyear datasets of site-specific studies have
shown that seasonal patterns in bacterioplankton community
composition (BCC) recur in freshwater ecosystems, indicating
that some microbial communities change directionally accord-
ing to intrinsic environmental conditions (e.g. Rösel, Allgaier and
Grossart 2012; Kara et al. 2013; Tammert et al. 2015). However,
given bacterial inherent diversity, rapid generation times and
the wide array of factors that can affect their abundance and
activity, predicting population dynamics can be challenging for
aquatic bacterial populations (Yannarell et al. 2003; Kent et al.
2004). Seasonal succession patterns have also been described
for phytoplankton community composition (PCC) (e.g. Anneville
et al. 2002; Rasconi, Winter and Kainz 2017) and its predictability
varies according to intrinsic environmental (Baines et al. 2000;
Bronmark and Hansson 2005) and extrinsic regional meteoro-
logical factors (e.g. Kent et al. 2007).

In recent years, a growing number of published works have
investigated how BCC associates with PCC (Zhu et al. 2016;
Mikhailov et al. 2019a). Many of these studies have found a
pronounced metabolic covariation or couplings between bac-
teria and phytoplankton (e.g. Bouvy et al. 1998; Morán, Duck-
low and Erickson 2013; Milici et al. 2016; Mikhailov et al. 2019a),
as well as among different community structures (Bock et al.
2018; Mikhailov et al. 2019b; Jeong, Choi and Kim 2020). BCC is
influenced by different kinds of biota, including the PCC, which
were found to play key roles in shaping their composition (Niu

et al. 2011; Liu et al. 2014; Su et al. 2017b). Succession in the PCC
likely affects the concentration and biochemical composition of
autochthonous organic matter available to bacteria (van Hannen
et al. 1999; Arrieta and Herndl 2002; Pinhassi et al. 2004). However,
the relationship between phytoplankton and bacterioplankton
strongly depends on the specific characteristics of each aquatic
system and therefore it is difficult to predict (Pérez et al. 2014).

An increasing number of studies have found a direct or indi-
rect interaction between Cyanobacteria and heterotrophic bac-
teria. The structural diversity of BCC has been associated with
bloom-forming freshwater Cyanobacteria genus, their diversity
apparently being driven by the metabolic capacity to degrade
cyanobacterial exudates and detrital materials (e.g. Zhu et al.
2014; Louati et al. 2015; Woodhouse et al. 2016). In this sense,
significant changes in BCC were observed during the outbreak
and decline of cyanobacterial blooms (Zhang et al. 2018, Wang,
Razzano and Mou 2020).

Understanding how microbial communities respond to
forces that shape their community structure and dynamics pro-
vides valuable information to help infer the underlying mecha-
nisms that regulate microbial diversity and community assem-
bly (e.g. Green, Bohannan and Whitaker 2008). The aims of this
study were (i) to evaluate the temporal patterns of phytoplank-
ton and bacterioplankton assemblages in two near (∼14 km)
interconnected and highly hypertrophic Pampean shallow lakes,
(ii) to study the temporal covariation between PCC and BCC,
as well as the correlation network patterns between differ-
ent taxa of phytoplankton and bacterioplankton, and (iii) to
assess the effect of intrinsic (environmental and biotic) and
extrinsic (temporal and meteorological) factors on PCC and
BCC structures and dynamics. We performed 16S rRNA gene
high-throughput sequencing (Illumina MiSeq) to study BCC and
inverted microscopy counts (Utermöhl) to study PCC seasonally
during 4 consecutive years (from 2012 to 2016). To the best of our
knowledge, this work is the first study that analyses the tem-
poral dynamic of BCC using molecular methods, together with
their association with PCC in temperate hypertrophic shallow
lakes.

MATERIALS AND METHODS

Study area

The two studied shallow lakes are located at Pampa Plain,
Argentina. The climate in this region is warm temperate, with
mean air temperature ranges of 10◦C to 22◦C in winter and sum-
mer, respectively. Annual precipitation averages 935 mm, most
of which occurs during the spring-summer months (Sierra, Hur-
tado and Spescha 1994). In addition, there is a regional climatic
phenomenon of inter-annual hydrologic cycles consisting of
several consecutive wet years followed by dry years in an irreg-
ular pattern (Iriondo and Kröhling 2007). The Pampean lakes
are polymictic due to their shallowness and the persistence of
winds. Vertical and horizontal homogeneity of the water column
is commonly observed for most limnological parameters (e.g.
Rennella and Quirós 2006; Torremorell et al. 2007). These lakes
contain very high nutrient concentrations and phytoplankton
abundances (Quirós and Drago 1999; Quirós 1988). In addition,
the presence of four distinct seasons in this mid-latitude tem-
perate climatic zone can lead to a dynamic change of aquatic
biological communities.
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The studied shallow lakes, Gómez (34.67◦S; 61.04◦W) and
Carpincho (34.57◦S; 60.89◦W), are located at the headwaters of
the Salado River. They are both connected by the aforemen-
tioned river, Gómez being located upstream and Carpincho
downstream. Both lakes have floodgates to regulate the water
level (Rennella 2007) and are used for recreational purposes.
Carpincho is near Junı́n city (34.55◦S; 60.93◦W), Buenos Aires
Province, Argentina) and receives waste discharges from it (e.g.
Rennella and Quirós 2006). A complete description of the study
area and main characteristics of the studied shallow lakes are
given in Rennella and Quirós (2006), Rennella et al. (2019) and
Schiaffino et al. (2019).

Samplings, physical and chemical variables

Integrated water samples were collected seasonally (January,
April, July and October) from October 2012 to October 2016 (n =
17 for each shallow lake) in acid-washed polycarbonate bottles
from the pelagic zone at 30–40 cm below the surface. Samples
were transported in the dark and at 4◦C immediately to the lab-
oratory. Determinations of nutrients [ammonium (N-NH3), solu-
ble reactive phosphorus (SRP), total phosphorus (TP) and organic
nitrogen (N org.)], chlorophyll a (Chl-a), dissolved organic carbon
(DOC), total suspended solids (TSS), ash-free dry weight (AFDW)
and inorganic weight were performed following the methods
described in Schiaffino et al. (2019). Water samples for phyto-
plankton analysis were preserved with 1% acidified Lugol´s solu-
tion until further analysis. Around 200 ml of water samples were
prefiltered in situ through a 55 μm net to remove zooplankton
and then filtered through 0.22 μm pore-size polycarbonate fil-
ters (47 mm, Millipore) for bacterioplankton analysis. These fil-
ters were frozen (-80◦C) until DNA extraction.

Temperature, pH, conductivity, dissolved oxygen (DO) and
nephelometric turbidity were measured in situ with portable
meters (Hanna HI991301; Hanna HI9146; Lutron TU-2016). Sec-
chi depths (SD) measures were also performed in situ.

Monthly mean air temperature, daily rainfall and storm
day data were provided by the National Meteorological Service
(Argentina). The Oceanic Niño Index (ONI) for each sampling
month was obtained from https://origin.cpc.ncep.noaa.gov/pro
ducts/analysis monitoring/ensostuff/ONI v5.php

PCC

Prefixed water samples were decanted in 2- and 5-ml cham-
bers for at least 24 h before counting. Phytoplankton quantifi-
cations were performed with an inverted microscope (Olym-
pus CKX41) at 400x magnification, following the Utermöhl (1958)
approach. Counting errors were estimated according to Venrick
(1978). These organisms were identified to the lowest possible
taxonomic level (genus and, when possible, species level).

BCC

Genomic DNA from stored filters was extracted using a CTAB
protocol (Fernandez Zenoff, Siñeriz and Farias 2006). The partial
16S rRNA gene was sequenced by Illumina MiSeq 2 × 300 paired-
end sequencing (Macrogen, Corea), using the primers 341F/805R
(Herlemann et al. 2011), which cover the hypervariable regions
V3–V4 of 16S rRNA gene.

MiSeq data were analysed using a modified version of the
pipeline proposed by Logares (2017) (https://github.com/ramal
ok). The reads were first analysed for error correction using

the algorithms based on Hamming graphs and Bayesian sub-
clustering (BAYES HAMMER tool) (Nikolenko, Korobeynikov and
Alekseyev 2013) implemented in SPAdes v. 3.5.0 (Nurk et al.
2013). The forward and reverse reads of each sequence were
paired using the function fastq mergepairs from USEARCH-v. 10
(Edgar and Flyvbjerg 2015). The minimum overlap length was
set to 20 bp and those assemblage sequences with less than
100 nucleotides were discarded and the rest of the parame-
ters were used as the default. Quality control of the sequences
took place by fastq filter in USEARCH-v. 10 (Edgar and Flyvb-
jerg 2015). Low-quality reads were removed using the filter val-
ues fastq fastq minlen = 100 and fastq maxee = 0.5. Reads that
passed the quality control were then analysed using UNOISE2
(Edgar 2016) to define operational taxonomic units (OTUs) with
no clustering (zero-radius OTUs [zOTUs]). zOTUs provide a
higher accuracy than OTUs by achieving single-nucleotide res-
olution after correcting for Illumina sequencing errors and
chimeras (Callahan et al. 2016; Edgar 2018). Finally, taxonomy
assignment of zOTUs was done by BLAST (Altschul et al. 1990),
using the SILVA database (SSURef 132 Nr99) as a reference,
and the zOTU table was created with the function otutab in
USEARCH-v10 (Edgar and Flyvbjerg 2015).

To reduce noise and thus false-positive predictions, we
restricted our analysis to taxa with an abundance higher than 10
reads. zOTUs assigned to Archaea, chloroplasts and Cyanobac-
teria were omitted from the analysis unless specified otherwise.
After this filtering, the number of total reads varied from 42 476
(spring 2012, Carpincho) to 18 108 (summer 2016, Gómez). With
the aim of comparing the different samples, we normalised the
BCC matrix. For this purpose, we randomly selected the same
number of Illumina reads from each lake and sampling date
based on the smallest sample size (matching the sample with
the lowest number of reads, i.e. 18 108 sequences).

Sequences were deposited at the European Nucleotide
Archive public database under the accession numbers
ERR4439170-ERR4439203 (Project accession number PRJEB37379).

Data handling and statistical analyses

The integrated trophic state index (TSI) was calculated according
to Adamovich et al. (2016), considering SD, Chl-a and TР (Carlson
1977). Index ranges between 40–50 indicate mesotrophic condi-
tions, between 50–60 eutrophic and >70 hypertrophic systems
(Adamovich et al. 2016).

All statistical analyses were performed in the R environment
(R version 3.4.4; R Core Team 2018).

To study the association between environmental variables
we performed pairwise correlations using Spearman´s rho tests.
Environmental variables were first standardised (mean sub-
tracted and divided by the standard deviation) using the vegan
package (Oksanen et al. 2017). The relevance of the environmen-
tal variables and their overall trends was explored using princi-
pal components analysis (PCA) (ter Braak and Smilauer 2002) on
the standardised environmental matrix using the Ade4 package
(Dray and Dufour 2007).

To analyse if samplings were deep enough to get a reason-
able estimation of OTU richness, rarefaction curves were per-
formed on the zOTU matrix without normalising and using
the vegan package. PCC and normalised BCC matrices, con-
structed with the highest taxonomic resolution obtained, were
both Hellinger-transformed prior to the statistical analyses (Leg-
endre and Gallagher 2001; Ramette 2007). PCC and BCC matri-
ces were explored for each lake using non-metric multidimen-
sional scaling (NMDS) and Bray-Curtis index to examine how the

https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php
https://github.com/ramalok
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microbial communities varied on a temporal scale in each shal-
low lake. To further study the influence of individual environ-
mental variables on PCC and BCC, we used the function envfit
(vegan package) to check for the correlations between the main
ordination axes and the environmental variables.

In order to statistically assess the degree of resemblance
of these microbial communities between seasons, analyses of
similarity (ANOSIM; Clarke 1993) using the Bray-Curtis distance
matrices were performed in each lake using the vegan package.

To study the phytoplankton and bacterioplankton alpha
diversity patterns, we calculated the Shannon-Weaver index
and the total richness for each sample date and shallow lake
using the vegan package. Significant differences (P < 0.05)
among seasons were evaluated with Kruskal-Wallis analyses
and Mann-Whitney U post-hoc test.

To describe the temporal structure of microbial communities
and to explore the relationship between dissimilarity data and
temporal distances we performed Mantel correlograms (Borcard
and Legendre 2012). To explore temporal patterns and to test for
linear temporal trends in community dynamics (PCC and BCC
dissimilarities) and the environmental variables (Euclidean dis-
similarity matrices and single variables), we regressed the data
(after meeting the assumptions) against the square root of the
time-lags (Collins, Micheli and Hartt 2000; Liu et al. 2015) using
the lm function in R. This approach can produce three theoreti-
cal patterns: a significant linear regression with positive slopes
(implying a directional change); a regression that is not signifi-
cant or the slope is not significantly different from zero (imply-
ing fluctuation or stochastic variation over time); and a negative
significant and linear slope (implying convergence to an earlier
sample period). The slope of the regression line indicates the
rate and direction of change, while the regression coefficient
(R2) serves as a measure of signal versus noise (low values indi-
cate high stochastic variation between sampling intervals, while
high values indicate a stronger signal of change) (Collins, Micheli
and Hartt 2000).

Variation partitioning using partial redundancy analyses
(pRDA) was performed to estimate the unique and combined
contributions of four factors or explanatory variables (extrin-
sic: temporal and meteorological; intrinsic: environmental and
biotic) in shaping microbial communities (PCC and BCC) using
the vegan package. The temporal explanatory matrix was con-
structed with 16 asymmetric eigenvector maps (AEM) follow-
ing Legendre and Gauthier (2014). This AEM matrix was per-
formed for a greater resolution of temporal trends using the
17 sampling dates and the functions aem.weight.time from the
AEM (Blanchet, Legendre and Gauthier 2007) and adespatial
(Dray et al. 2020) packages. The meteorological matrix was com-
prised of monthly air temperature, monthly rainfall, monthly
storm days and ONI. The environmental explanatory matrix
was composed of water level, SD, temperature, pH, conductiv-
ity, turbidity, TP, N org., N-NH3 and DOC. The biotic explanatory
matrix was constructed with the abundances of Chlorophyceae,
Cyanobacteria, Bacillariophyceae, Zygnematophyceae, Crypto-
phyceae, Euglenophyceae, Chrysophyceae, Eustigmatophyceae
and Dinophyceae (as explanatory variables of BCC) and with
the sequencing reads of Actinobacteria, Bacteroidetes, Verru-
comicrobia, Planctomycetes, Alphaproteobacteria, Gammapro-
teobacteria and other Proteobacteria (as explanatory variables
of PCC). In each pRDA the forward selection was used for adding
explanatory factors (P < 0.05) to the model. The explanatory
power of the model was analysed using adjusted R2 as coeffi-
cient of determination. The function forward.sel of the packfor

package (Dray, Legendre and Blanchet 2007) was used for step-
wise model-building for each level of explanatory variables.

To study the degree of covariation between the PCC and BCC
within each shallow lake, as well as between shallow lakes,
we performed a simple Mantel test using Spearman correla-
tions (Mantel and Valand 1970) and a permutation test based
on Procrustes analyses (Peres-Neto and Jackson 2001; Kent et al.
2007). Procrustean matrix superimposition was achieved using
the axes from ordination methods (Legendre and Legendre 1998;
Peres-Neto and Jackson 2001) and the vegan package. The sum
of squared residuals is used as a metric of association (m2)
and varies between 0 and 1. Smaller values of m2 indicate
stronger covariation between data sets (Peres-Neto and Jack-
son 2001). Besides, in order to disentangle the effect of abiotic
variables (environmental, temporal and meteorological) on the
PCC and BCC associations, we performed partial Mantel tests
between PCC and BCC similarity matrices (Bray-Curtis index)
while controlling for the effect of each abiotic similarity matrix
(1–Euclidean distance). Simple and partial Mantel tests were per-
formed using ecodist package (Goslee and Urban 2007).

To infer inter-taxa associations, we performed a correlation
network analysis using the CoNet software v. 1.1.1.beta (Faust
and Raes 2016) implemented in Cytoscape v. 3.7.1 (Shannon
et al. 2003). Four measures were calculated: Bray–Curtis and
Kullback–Leibler nonparametric dissimilarity indices, and Pear-
son and Spearman rank correlations. The combination of their
results allows the appropriateness of scoring measures to deter-
mine the statistical significance of correlations (Faust and Raes
2016). The initial edge selection was set to include the 2000 pos-
itive and 2000 negative edges consistent across all four corre-
lation measures. The significance of the edges was calculated
using the ReBoot method (Faust et al. 2012) based on 1000 per-
mutations with renormalisation and 1000 bootstrap iterations.
Only edges supported by at least two methods were considered.
Then edge-specific P-values were merged using Brown’s method
(Volterra 1926), followed by Benjamini–Hochberg for false dis-
covery rate correction; edges with merged P-values below 0.05
were kept (Faust and Raes 2016). We constructed one network
for each lake considering both BCC and PCC communities. For
BCC we selected zOTU with abundance >50 reads and present
in at least three samples; regarding PCC, only taxa present in
at least three samples were selected. To explore indirect asso-
ciations driven by environmental factors (Faust and Raes 2016),
we included environmental information in an additional matrix
containing the following variables: water temperature, DO, pH,
turbidity, conductivity, TSS, AFWD, SRP, TP, N org., N-NH3, DOC,
inorganic weight. No indirect edges between environmental and
taxa nodes were detected. The networks were visualised in
Cytoscape v. 3.7.1 (Shannon et al. 2003) and the Network Anal-
yser tool (Assenov et al. 2008) was used to calculate four net-
work topology properties: number of nodes (number of BCC and
PCC taxa), number of edges (number of associations), average
number of neighbours and clustering coefficient. The average
number of neighbours, as well as the clustering coefficients,
were used to evaluate the connectedness of the correlation net-
works. The average number of neighbour measures, the average
connectivity of a node in the network and the clustering coef-
ficients indicate how nodes are embedded in their neighbour-
hood. Thus, higher values of both metrics are expected with an
increase in the network connectivity (Newman 2003; Barabási
and Oltvai 2004; Faust et al. 2015). Additionally, for each network
we identified highly connected taxa (commonly referred as hub
taxa) as those nodes with a high degree (>10), closeness cen-
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trality (>0.26) and low betweenness centrality (<0.02) (Berry and
Widder 2014; Agler et al. 2016; Layeghifard, Hwang and Guttman
2017; Banerjee, Schlaeppi and van der Heijden 2018) using the
Network Analyser tool in Cytoscape. Closeness centrality mea-
sures the length of the shortest path between two nodes and
thus reflects the importance of a node in disseminating informa-
tion. Betweenness centrality quantifies how many steps away a
particular node is from all the others in the web, denoting the
amount of influence a node has over the flow of information in
the network (Banerjee, Schlaeppi and van der Heijden 2018).

RESULTS

Environmental variables

In general, both shallow lakes presented similar ranges and
dynamics of all measured environmental variables (Table 1, Sup-
plementary Fig. S1). Nutrients and Chl-a concentrations were
within the hypertrophic range (Table 1), with significant increas-
ing TSI values throughout the 4-year study (Supplementary Fig.
S1a; Gómez R2 = 0.25, slope = 0.15 and Carpincho R2 = 0.23,
slope = 0.15; both P < 0.05). Contrarily, SD showed a significant
decreasing temporal trend (Supplementary Fig. S1e; Gómez R2 =
0.37, slope = -0.29 and Carpincho R2 = 0.50, slope = -0.25; both
P < 0.01). The lowest water levels were observed from July 2013
(winter) to January 2014 (summer) (1.0 ± 0.1 m) constituting a
dry period (Supplementary Fig. S1b, grey area), in concordance
with lower mean monthly precipitations (88 ± 77 mm). Conduc-
tivity presented an opposite pattern to and TP the same pattern
as water level (Supplementary Fig. S1d and h, respectively). DOC
concentrations were relatively constant throughout the study,
except for a peak in summer 2014 in both lakes (Supplementary
Fig. S1g). Slight significant linear temporal trends (linear regres-
sions) were observed in the dissimilarity of environmental vari-
ables over time (Gómez R2 = 0.03, slope = 0.020 and Carpincho
R2 = 0.04 slope = 0.027; both P < 0.05), indicating a smooth direc-
tional change.

The first two axes of the PCA explained around 69% of the
variability in both lakes (Supplementary Fig. S2a and b). The first
axis of each biplot was mainly defined by hydrological variables
(such as conductivity and water level) and trophic state vari-
ables (such as TP, Chl-a), whereas the second axis was mainly
correlated with seasonal variables (such as DO, water tempera-
ture). Thus, PCA showed that the environmental variables both
presented a seasonal pattern (intra-annual), with differences
mainly between summer and winter, and an inter-annual pat-
tern shaped by hydrological (dry-wet periods) and trophic vari-
ables.

Phytoplankton richness, diversity and composition

Phytoplankton richness did not differ between seasons (Supple-
mentary Fig. S3a and b). However, its richness positively corre-
lated with TSI in both lakes, while its diversity did not show any
significant correlation (Table 2).

On average, phytoplankton were dominated by Chloro-
phyceae (60%), followed by Cyanobacteria (23%) and Bacillar-
iophyceae (13%), except during the conspicuous cyanobacte-
rial bloom observed during summer 2014 (Fig. 1A and B), when
the relative abundance of Cyanobacteria (Coelosphaerium sp.,
Aphanothece sp./Aphanocapsa sp., cf. Sphaerospermopsis aphani-
zomenoides and Raphidiopsis mediterranea) dominated in both
lakes. In particular, the absolute abundance of Cyanobacteria
during summer 2014 reached abundances 4-fold higher (1.1 ×

105 ind. mL−1) than the abundance registered in other months
(mean value 2.7 × 104 ind. mL−1) in both shallow lakes (Fig. 1C
and D).

The NMDS analysis performed with the PCC of both shal-
low lakes also showed a seasonal ordination of the samples
(Fig. 2A and B). The similarity test showed differences between
seasons (ANOSIM Gómez R = 0.20, P = 0.018 and Carpincho R
= 0.17, P = 0.0373), the composition being significantly different
between summer and spring (P-value, sequential Bonferroni sig-
nificance <0.0155) and summer and winter (P-value, sequential
Bonferroni significance <0.0312) in both lakes. We further inves-
tigated the influence of individual environmental variables on
PCC by correlating the scores derived from the ordination of sites
(NMDS 1 and 2) shown in Fig. 2 with each environmental vari-
able. Patterns in PCC were related to water temperature (param-
eter related to seasonality), as well as to TSI and SD (variables
related to trophic state).

Heterotrophic bacteria richness, diversity and
composition

Rarefaction curves performed for every sample showed that
zOTU richness tended to reach a plateau, suggesting that sam-
pling depth and sequencing coverage were satisfactory (Supple-
mentary Fig. S4). The average zOTU richness per sampling date
in Gómez was 2730 ± 400 (1687–3273) and in Carpincho it was
2806 ± 335 (1996–3306). Both connected lakes showed a high per-
centage of shared OTUs (94.1%) and low percentages of exclu-
sive zOTUs (Gomez 2.5% and Carpincho 3.4%). Bacterial richness
was significantly lower during summers compared with win-
ters in both lakes (Supplementary Fig. S3c and d). The lowest
bacterial richness (Supplementary Fig. S5a) and diversity (Sup-
plementary Fig. S5b) were observed in summer 2014, coinciding
with the beginning of an important cyanobacterial bloom and a
lower water level being registered (Supplementary Fig. S1b). In
addition, both bacterial richness and diversity were negatively
correlated with water temperature, conductivity and DOC, while
bacterial richness was positively correlated with water level and
TSI in both shallow lakes (Table 2).

On average, Actinobacteria accounted for around 24% of total
bacterial reads, followed by Proteobacteria (∼22%), Bacteroidetes
(∼18%), Verrucomicrobia (∼12%) and Planctomycetes (∼10%)
in both shallow lakes (Fig. 3A and B). Among Proteobacteria,
Betaproteobacteria was the best represented (∼42%) class, while
Alphaproteobacteria accounted for around 29%, Gammapro-
teobacteria for around 19% and other Proteobacteria for around
10% in both lakes. These major groups were well represented in
all seasons and showed small changes during the study period
(Fig. 3). The best represented zOTU was Sporichthyaceae hgcl clade
(Actinobacteria) in both lakes, except in summer 2014 during
the cyanobacterial bloom (Fig. 1). Accordingly, Illumina reads of
Cyanobacteria dominated widely over the other groups during
the bloom (Fig. 3C and D).

The NMDS analysis performed with BCC showed a seasonal
ordination of the samples (Fig. 4A and B). The similarity test
showed differences between seasons (ANOSIM Gómez R = 0.43
and Carpincho R = 0.49, both P = 0.0001), being the composi-
tion significantly different between summer and spring (P-value,
sequential Bonferroni significance <0.0155), summer and win-
ter (P < 0.0312), summer and autumn (P < 0.0265) and winter
and autumn (P < 0.0259) in both lakes. We further studied the
influence of individual environmental variables on BCC, corre-
lating the scores derived from the ordination of sites (NMDS 1
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Table 1. Average values (AVG), standard deviation (STDEV), maximum (MAX) and minimum (MIN) values of the main physical, chemical and
biological parameters from the shallow lakes Gómez and Carpincho during the 4-year study (n = 17).

Gómez Carpincho

AVG STDEV MIN MAX AVG STDEV MIN MAX

Water level (m) 1.36 0.19 0.95 1.60 1.31 0.15 1.00 1.52
SD (cm) 14.62 4.95 8.00 23.00 13.85 3.72 8.00 20.00
Water temperature (◦C) 18.01 6.41 7.80 28.50 17.86 6.14 8.70 27.90
DO (mg L−1) 8.88 1.71 6.06 12.20 8.44 2.04 5.48 13.22
pH 8.87 0.24 8.33 9.27 8.88 0.20 8.54 9.18
Conductivity (μS cm−1) 4506 1407 2630 7960 4340 1133 2670 7210
Salinity (g L−1) 2.88 0.90 1.68 5.09 2.78 0.72 1.71 4.61
Turbidity (NTU) 141.82 67.96 53.00 310.00 139.76 57.95 60.00 244.00
TSS (mg L−1) 139.82 62.61 71.00 257.00 144.94 53.93 65.00 255.00
AFDW (mg L−1) 48.88 16.45 28.00 82.00 50.88 16.71 21.00 86.00
Inorganic weight (mg L−1) 90.94 47.95 38.00 182.00 94.06 39.52 44.00 169.00
TP (mg L−1) 0.86 0.21 0.56 1.17 0.89 0.24 0.43 1.30
SRP (mg L−1) 0.55 0.29 0.07 0.96 0.49 0.25 0.14 0.94
N org. (mg L−1) 4.03 0.55 3.14 5.20 3.98 0.92 2.59 6.68
Chl-a (μg L−1) 147 79 24 278 163 91 62 338
N-NH3 (mg L−1) 0.09 0.15 0.00 0.56 0.06 0.10 0.00 0.31
DOC (mg L−1) 29.02 5.58 21.40 43.23 26.40 7.43 11.48 49.47

SD, Secchi depth; DO, dissolved oxygen; TSS, total suspended solid; AFDW, ash-free dry weight; TP, total phosphorous; SRP, soluble reactive phosphorous; N org.,
Kjeldahl nitrogen; Chl-a, chlorophyll-a; DOC, dissolved organic carbon; NTU, nephelometric turbidity units.

and 2) shown in Fig. 4 with each environmental variable. Pat-
terns in BCC were related to water temperature and DO (param-
eters related to seasonality) and water level, conductivity and
TSI (variables related to hydrology and trophic state).

Heterotrophic bacteria and phytoplankton community
patterns

We found inter-annual variations of microbial communities
throughout the study. The dissimilarity of PCC and BCC
increased with increasing temporal distance (Table 3). Further-
more, a significant linear temporal trend was present in PCC
(Gómez: R2 = 0.15, slope = 0.0043 and Carpincho: R2 = 0.23, slope
= 0.0053; both P < 0.0001) and BCC dissimilarities (Gómez: R2 =
0.029, slope = 0.0015 and Carpincho: R2 = 0.030, slope = 0.0014;
both P < 0.05) over time, but BCC showed much lower rate of
change (slopes) and regression coefficients (R2).

The Mantel correlograms showed covariation patterns
of microbial communities with similar temporal structure
throughout the study in both lakes (Fig. 5). The correlograms
for both communities and shallow lakes showed almost similar
shapes and were globally significant at the Bonferroni-corrected
α level (0.05/17 = 0.00294). Coincidently, PCC showed a more
marked increasing dissimilarity with increasing time distance
class (Fig. 5A and B) than BCC (Fig. 5C and D). There were signifi-
cant positive temporal correlations at the beginning of the study,
in the first and fourth temporal distance classes, suggesting that
the community similarity among samples was higher (or com-
munity dissimilarity lower) than expected by chance. Besides,
there was a significant negative autocorrelation between obser-
vations in the 11th temporal distance class, suggesting that dis-
similarity was higher than expected by chance.

Microbial community covariations between shallow lakes
were supported by positive correlations (Table 3). To further
study these associations, we also performed a Procrustes analy-
sis, showing significant temporal covariation between BCC (Pro-
crustes sum of squares, m2 = 0.010, P < 0.001) and between PCC
(Procrustes sum of squares, m2 = 0.09, P < 0.001) from both lakes.

Microbial community covariations within each shallow lake
were also found and supported by positive correlations (Table 3).
In coincidence, the Procrustes analysis also showed significant
temporal associations between BCC and PCC in Gómez (m2 =
0.144, P = 0.001) and Carpincho (m2 = 0.140, P = 0.001). Besides,
the covariation between BCC and PCC similarities within each
shallow lake remained positive and significant, while control-
ling for the effects of environmental (intrinsic), temporal and
meteorological (extrinsic) explanatory variables or all together
(Table 3).

The variation partitioning analysis performed on PCC in
Gómez (Fig. 6A) and Carpincho (Fig. 6B) showed that pure extrin-
sic temporal factors (forward selection: AEM1, AEM2, AEM8
modelling inter-annual variability and AEM9 modelling intra-
annual variability) explained between 16–18% of the PCC vari-
ation and pure intrinsic environmental variables (forward selec-
tion: water temperature, SD, N-NH3 and TP) explained between
8–9%. Meteorological factors (1–3%, forward selection: mean air
temperature) and bacterioplankton classes (1–2%, forward selec-
tion: Alphaproteobacteria in Gómez, Planctomycetes in Carpin-
cho) did not explain much of the PCC variation. Similarly, the
combined contributions of factors explained low percentages
(<6%) of PCC variation (Fig. 6A and B). The variation partition-
ing analysis performed on BCC in Gómez (Fig. 6C) and Carpin-
cho (Fig. 6D) indicated that pure intrinsic environmental vari-
ables (forward selection: water temperature, SD, conductivity
and pH) explained between 8–10% of the BCC variation and pure
phytoplankton classes (forward selection: Chlorophyceae and
Cyanobacteria) explained between 7–8%. Pure extrinsic meteo-
rological factors (2–5%, forward selection: mean air temperature)
and temporal factors (forward selection: AEM1, AEM7, AEM9) did
not explain much of the BCC variation (0–1%). The combined
contributions of factors explained between 1 and 8% of BCC vari-
ation in each shallow lake (Fig. 6C and D).

Overall, both correlation networks (Supplementary Fig. S6)
showed similar topological features. The number of nodes was
almost similar in both shallow lakes (573 in Gómez and 763 in
Carpincho), whereas the number of connections (i.e. number
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Figure 1. Relative abundance of the phytoplankton classes found during the 4-year study in (A) Gómez and (B) Carpincho shallow lakes. Absolute abundance dynamics
of the dominant phytoplankton classes in (C) Gómez and (D) Carpincho. Grey areas denote the dry periods during the study.

of edges) was lower in Gómez than in Carpincho (812 and 1252,
respectively). Additionally, the number of positive correlations
was higher than the number of negative correlations in both
lakes, being higher in Gómez (positive edges in Gómez 84.5%
and in Carpincho 59.1%). The connectivity of the networks was
also similar in both lakes as reflected by the average number
of neighbouring metrics (Gómez = 2.8, Carpincho = 3.3) and
the number of clustering coefficients (Gómez = 0.16, Carpincho
= 0.14). Most of the BCC taxa were more related to each other
than with PCC species, being Actinobacteria and Bacteroidetes
the phyla with the major contribution to the total correlation
numbers (Gómez = 37.9% and 31.7% and Carpincho = 37.9%
and 31.6%, respectively). Regarding the PCC, Chlorophyta,
Cyanobacteria, Bacillariophyta and Zygnematophyta showed
significant interactions with heterotrophic bacteria in both
Gómez and Carpincho shallow lakes (Supplementary Tables S1
and S2, respectively). Besides, Euglenophyta and Eustigmato-
phyta were also significantly correlated with heterotrophic
bacteria in Carpincho (Supplementary Table S2). We detected

37 different highly connected taxa (11 taxa in Gómez and 26
taxa in Carpincho), all belonging to the BCC. The majority were
exclusive of a single lake, being only three shared by both
shallow lakes (Supplementary Table S3).

DISCUSSION

This work shows significant temporal patterns in PCC and BCC
throughout the 4-year study, with both intra-annual (seasonal-
ity) and inter-annual variations. The marked seasonal patterns
shown by both communities had generally higher differences
between summer and winter (Figs 2 and 4, Supplementary
Fig. S3). Seasonal changes have strong influences on microbial
community structure, shaping its diversity and dynamics (e.g.
Crump and Hobbie 2005; Bock et al. 2014). Similar seasonal pat-
terns of BCC were reported in different aquatic environments,
such as temperate eutrophic shallow lakes (De Figueiredo,
Pereira and Correia 2010), temperate meso-eutrophic estuarine
systems (Morán, Ducklow and Erickson 2013), temperate rivers
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Figure 2. Biplots of the non-metric multidimensional scaling (NMDS) performed on Hellinger-transformed phytoplankton community composition using Bray-Curtis
similarity index in (A) Gómez and (B) Carpincho. The arrows indicate the significant correlations (P < 0.05) between the environmental variables and the ordination

axes and were calculated passively after NMDS by the envfit function. SD: Secchi depth. TSI: trophic state index.

Table 3. Results of the simple (between two matrices) and partial Mantel test (between two matrices while controlling for the effect of a third
matrix) performed with bacterioplankton (BCC) and phytoplankton (PCC) community composition similarity matrices (Bray-Curtis). Partial
Mantel test performed while controlling for the effect of environmental—env (Gómez: water temperature, SD, conductivity; Carpincho: water
temperature, SD, conductivity, pH, TP, N-NH3), temporal—temp (AEM1, AEM2, AEM7, AEM8, AEM9) and meteorological—met (mean air temper-
ature) similarity matrices (1- Euclidean distance). PCCd and BCCd dissimilarities (1-Bray-Curtis similarity) against time-lag (pairwise Euclidean
distances in sample times).

Gómez Carpincho Between lakes

Simple Mantel Partial Mantel Simple Mantel Partial Mantel Simple Mantel

Matrix type r p r p r p r p r p

PCCd vs time-lag 0.39 <0.001 0.46 <0.001
BCCd vs time-lag 0.21 0.020 0.20 0.030
PCC Gómez vs PCC Carpincho - - - - - - - - 0.87 <0.0001
BCC Gómez vs BCC Carpincho - - - - - - - - 0.94 <0.0001
BCC vs PCC 0.67 <0.0001 - - 0.63 <0.0001 - -
BCC vs PCC, controlling env - - 0.66 <0.0001 - - 0.59 <0.0001
BCC vs PCC, controlling temp - - 0.66 <0.0001 - - 0.62 <0.0001
BCC vs PCC, controlling met - - 0.67 <0.0001 - - 0.63 <0.0001
BCC vs PCC, controlling all abiotic - - 0.66 <0.0001 - - 0.57 <0.0001

Bold values P < 0.05. Abiotic variables (intrinsic+extrinsic): environmental+temporal+meteorological.

(Crump and Hobbie 2005) and subtropical eutrophic shallow
lakes (Su et al. 2017a). Long-term studies have also shown
recurring seasonal patterns of BCC in freshwater systems,
indicating that some microbial communities change direction-
ally according to environmental conditions (e.g. Rösel, Allgaier
and Grossart 2012; Kara et al. 2013), and that certain bacterial
groups can be strongly repeatable and dependent on some envi-
ronmental variables, such as temperature, nutrients, organic
carbon and daylight hours (Gilbert et al. 2012). Seasonal succes-
sion patterns have also been described for PCC (e.g. Anneville
et al. 2002; Rasconi, Winter and Kainz 2017), their community
composition being strongly related to the annual temperature
cycle in warm temperate reservoirs (Grover and Chrzanowski
2006). Accordingly, we found that water temperature was an

important intrinsic variable shaping both PCC and BCC (Figs 2,
4 and 6), which is also modulated by regional extrinsic factors
(i.e. regional climate). This intrinsic environmental variable has
been described as a primary factor regulating the structure and
temporal patterns of bacterioplankton and phytoplankton in
many aquatic systems (e.g. Crump and Hobbie 2005; Scheibner
et al. 2014; Su et al. 2017a; Mikhailov et al. 2019a).

Additionally, we found inter-annual variations with increas-
ing PCC and BCC dissimilarities with temporal distance (Table 3).
Similarly, the linear temporal trends (linear regressions) had
significant and positive slopes, indicating that microbial com-
munities were undergoing a directional change. Notably, the
dissimilarity of PCC increased with higher slopes and R2 values
compared with BCC, indicating that phytoplankton had a faster
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Figure 3. Relative number of reads of heterotrophic bacterial groups during the study period in (A) Gómez and (B) Carpincho shallow lakes. Dynamics of the absolute

number of reads of major bacterial groups, including cyanobacterial reads (black line), in (C) Gómez and (D) Carpincho. Grey areas denote the dry periods during the
study.

rate of change and less stochastic variation between sample
intervals than bacterioplankton. Similar results were found by
Liu et al. (2015) in subtropical reservoirs. On the other hand, Su
et al. (2017a) reported that the dynamics of phyto- and bacteri-
oplankton dissimilarities exhibited different temporal patterns
in the eutrophic lake Taihu (China) depending on the taxonomic
resolution. Bacterioplankton showed more stochastic variation
than phytoplankton at the phylum level, although significant
temporal directional change was found when examined at the
genus level. Coincidently, in our study the correlograms for
both communities and shallow lakes showed almost similar
temporal structure and shapes throughout the study. However,
PCC showed a more marked increasing dissimilarity with
increasing time than BCC (Fig. 5). This could be associated to
the bacterial traits, such as high abundance, high dispersion
rates, rapid growth rates and small cell sizes, which may induce
a different response of bacterioplankton to the environmental

changes when compared with phytoplankton. In particu-
lar, the aforementioned bacterial traits could allow bacteria
to quickly adapt to new environmental conditions, causing
their lower rate and signal of change throughout the study
period.

Not only the microbial communities, but also the envi-
ronmental variables, showed both seasonal and inter-annual
patterns (Supplementary Fig. S2). Similarly, the environmental
variables also evidenced seasonality with marked differences
between summer and winter. The inter-annual pattern, marked
by dry-wet periods, showed increasing TSI and decreasing SD
linear trends (Supplementary Fig. S1a and e) throughout the
study. Accordingly, in a previous study performed in these two
hypertrophic shallow lakes, it was found that both lakes were
strongly influenced by temporal factors, modulated by intra-
and inter-annual variations, affecting not only the abundance
of microbial components (bacterioplankton and microplankton
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Figure 4. Biplots of the non-metric multidimensional scaling (NMDS) performed on Hellinger-transformed bacterioplankton community composition using Bray-Curtis
similarity index in (A) Gómez and (B) Carpincho. The arrows indicate the significant correlations (P < 0.05) between the environmental variables and the ordination

axes and were calculated passively after NMDS by the envfit function. W. level: water level, TSI: trophic state index, DO: dissolved oxygen.

abundances), but also the physical, chemical and biological vari-
ables (Schiaffino et al. 2019).

Although different temporal rates of change and signals of
change of PCC and BCC similarities were observed, these com-
munities showed within and between shallow lake temporal
associations and synchronous shifts (Table 3 and Procrustes
analyses). Besides, inter-taxa algal-bacterial connections were
also found in each shallow lake (Supplementary Fig. S6). The
covariation of microbial communities between shallow lakes
is probably caused not only by the effect of extrinsic regional
factors (i.e. temperature, climate), but also for the connection
and closeness between both shallow lakes. These lakes are
connected by the Salado River and accordingly they also pre-
sented a high percentage of shared bacterial zOTUs (94.1%) and
similar phytoplankton composition. Likewise, temporal associa-
tions and linkages of phytoplankton and prokaryotes within and
between aquatic environments have also been described for var-
ious types of freshwater systems (e.g. Kent et al. 2007; Liu et al.
2014; Mikhailov et al. 2019a).

The within-lake covariation between PCC and BCC was espe-
cially exemplified during the cyanobacterial bloom observed in
summer 2014, which caused a strong sudden disruption in bac-
terioplankton richness and diversity (Supplementary Fig. S5).
Several studies demonstrated that algal blooms are biological
disturbances that affect BCC in freshwater systems (e.g. Berry
et al. 2017; Scherer et al. 2017; Su et al. 2017b; Zhang et al. 2018)
and marine environments (Teeling et al. 2012; Bunse et al. 2016).
In particular, the structural diversity of BCC was associated
with some bloom-forming freshwater Cyanobacteria genus (e.g.
Wiedner et al. 2007; Zhu et al. 2014; Louati et al. 2015; Wood-
house et al. 2016). It was observed that Cyanobacteria had greater
impacts on BCC than planktonic algae and zooplankton (Wang,
Razzano and Mou 2020). Accordingly, during the cyanobacte-
rial bloom registered in our study, the best represented zOTU

Sporichthyaceae decreased its number of reads. On the other
hand, during the bloom, a peak of DOC was observed in both
lakes (Supplementary Fig. S1g). Similarly, Ye et al. (2012) found
an accumulation of DOC during a spring-summer cyanobacterial
bloom in a Chinese lake. This is in concordance with the produc-
tion of organic matter that is consumed by specific groups of het-
erotrophic bacteria, leading to synchronisation of some plank-
tonic bacterial groups with phytoplankton blooms (Buchan et al.
2014; Tan et al. 2015; Mikhailov et al. 2019a).

Algal-bacterial associations between different taxa of phyto-
plankton and bacterioplankton within each lake were also found
(Supplementary Fig. S6). Analysis of the topological parame-
ters of the two correlation networks revealed that the inter-taxa
associations between BCC and PCC presented a general simi-
lar pattern in both lakes. Interestingly, in both shallow lakes
the number of positive correlations was higher than the num-
ber of negative ones. Previous studies in terrestrial and marine
bacterial communities have also revealed association patterns
dominated by positive correlations (Barberán et al. 2012; Liu et al.
2015; Ma et al. 2016). These correlations may indicate a mutual-
istic interaction, while the negative correlations have a compet-
itive relationship (Lupatini et al. 2014; Liu et al. 2019; Mikhailov
et al. 2019a). However, microbes can also positively or negatively
correlate for indirect reasons, due to their environmental pref-
erences (Weiss et al. 2016). Therefore, these associations may
be explained by the similar environmental preference, which
enables them to coexist in the same ecological niche. Thus, taxa
could be related due to a true ecological association or because of
an abiotic or biotic environmental factor (Faust and Raes 2016).
In our study, the network analyses showed true correlations
between algal-bacterial taxa independently of the effect of envi-
ronmental variables (Supplementary Fig. S6).

The nodes of the networks with more connections with oth-
ers were considered as hub or highly connected taxa (Berry
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Figure 5. Multivariate Mantel correlograms of PCC and BCC dissimilarity. The ordinate indicates correlations (positive or negative) between PCC in a distance class in
(A) Gómez and (B) Carpincho and between BCC in a distance class in (C) Gómez and (D) Carpincho, while the abscissa indicates temporal distance classes in days. Each
point indicates the correlation for a temporal distance class, which represents about 100 days. Black squares indicate significant multivariate temporal correlation at

P < 0.05 after Holm correction for multiple testing.

and Widder 2014; Agler et al. 2016; Banerjee, Schlaeppi and
van der Heijden 2018). These taxa play a fundamental role in
determining the structure and function of microbiomes. How-
ever, as found in previous studies, most hub taxa were not the
most abundant, contributing less than 9% to the total reads (e.g.
Comte et al. 2016; Xue et al. 2018). Additionally, in our study
the set of hub or highly connected taxa were different in both
lakes (Supplementary Table S3). This result is surprising con-
sidering the huge similarity of the two lakes in their environ-
mental conditions, taxonomic compositions, association pat-
terns and between-lake covariations; characteristics probably
given by their connection and closeness. These results empha-
sised the importance of studying highly connected taxa to fully
understand and comprehend microbial communities (Agler et al.
2016; Banerjee, Schlaeppi and van der Heijden 2018).

The intrinsic environmental variables affected both PCC and
BCC variations (8–10%), and in particular part of the variation of

BCC (7–8%) was also affected by phytoplankton (i.e. Cyanobac-
teria and Chlorophyceae), but not the other way around (Fig. 6).
Accordingly, Chlorophyta and Cyanobacteria showed the high-
est number of interactions with bacterioplankton taxa (Supple-
mentary Fig. S6). Besides, we further found within-shallow lake
association between BCC and PCC, even controlling for extrinsic
and intrinsic factors, suggesting a covariation mediated by biotic
interaction (Table 3). These results are in line with earlier stud-
ies, which suggested that a large part of the bacterial variability
is influenced by phytoplankton (e.g. Kisand and Tammert 2000;
Kent et al. 2007; Niu et al. 2011; Teeling et al. 2012). Experimental
incubations provided evidence that phytoplankton assemblages
shape bacterial community development (Sarmento and Gasol
2012; Paver et al. 2013) and algal exudates influence the struc-
ture of BCC (Paver and Kent 2010). However, it would be neces-
sary to combine high-frequency environmental time series data
and experimental manipulations to confirm the phytoplankton
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Figure 6. Variation partitioning performed with the PCC in (A) Gómez and (B) Carpincho and BCC in (C) Gómez and (D) Carpincho as response matrices versus environ-
mental (env), temporal (temp), meteorological (met) and biotic (bacterioplankton- bac or phytoplankton-phyto) explanatory factors. On the PCC response matrix, the
forward selection of explanatory variables in both lakes were: AEM 1, AEM 2, AEM 8 and AEM 9 (temporal explanatory matrix); monthly mean air temperature (meteoro-
logical explanatory matrix); water temperature, SD (Gómez) and water temperature, SD, N-NH3, TP (Carpincho) (environmental explanatory matrix); Alphaproteobac-

teria (Gómez) and Planctomycetes (Carpincho) (bacterioplankton explanatory matrix). On the BCC response matrix, the forward selection of explanatory variables in
both lakes were: AEM 1, AEM 7 and AEM 9 (temporal explanatory matrix); monthly mean air temperature (meteorological explanatory matrix); water temperature, SD,
conductivity (Gómez) and water temperature, SD, conductivity, pH (Carpincho) (environmental explanatory matrix); Chlorophyceae and Cyanobacteria (phytoplankton
explanatory matrix).

influence on BCC dynamics and to firmly establish cause and
effect.

The extrinsic (temporal and meteorological) factors
explained a significant part of PCC variation (17–21%), but
did not explain much of the BCC variation (Fig. 6). However,
we found a marked seasonal trend in BCC (Fig. 4), with water
temperature as one of the main intrinsic variables. These results
suggest that the influence of extrinsic regional factors can be
channelled to bacterioplankton through both environmental
(i.e. water temperature) and phytoplankton effects. Similarly,
Kent et al. (2007) reported that bacteria dynamics were driven
by intrinsic interactions with phytoplankton and demonstrated
that these interactions transmitted the signal of the regional
extrinsic factors to the bacterial communities. Besides, it was
found that synchrony between phytoplankton and bacteria may
be caused directly by biotic interactions (such as mutualisms,

antagonisms, parasitism and competition) that affect the
microbial structure and their ecological functions (e.g. Cole
1982; Kisand and Tammert 2000; Joint et al. 2002; Sarmento and
Gasol 2012).

Overall, our results showed annual (seasonality) and inter-
annual variations in microbial composition and environmental
variables, and also revealed within- and between-shallow lakes
synchronous shifts in PCC and BCC. The within-lake covaria-
tions between PCC and BCC persisted, while controlling for the
effects of intrinsic and extrinsic factors, supporting a commu-
nity coupling mediated by intrinsic biotic interactions. These
results open new perspectives for future studies involving exper-
iments and high-frequency samplings in order to further com-
prehend the algal-bacteria interactions, focusing on bloom-
forming Cyanobacteria and heterotrophic bacteria from hyper-
trophic aquatic systems.
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